全文获取类型
收费全文 | 456篇 |
免费 | 20篇 |
专业分类
476篇 |
出版年
2024年 | 1篇 |
2023年 | 5篇 |
2022年 | 15篇 |
2021年 | 19篇 |
2020年 | 9篇 |
2019年 | 17篇 |
2018年 | 10篇 |
2017年 | 13篇 |
2016年 | 19篇 |
2015年 | 23篇 |
2014年 | 33篇 |
2013年 | 41篇 |
2012年 | 43篇 |
2011年 | 33篇 |
2010年 | 17篇 |
2009年 | 20篇 |
2008年 | 24篇 |
2007年 | 23篇 |
2006年 | 24篇 |
2005年 | 18篇 |
2004年 | 18篇 |
2003年 | 8篇 |
2002年 | 13篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有476条查询结果,搜索用时 14 毫秒
21.
L Dorstyn J Puccini A Nikolic S Shalini C H Wilson M D Norris M Haber S Kumar 《Cell death & disease》2014,5(8):e1383
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the Eμ-Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.The caspase family of cysteine proteases are highly conserved regulators of cell death by apoptosis.1 In addition to their pro-apoptotic function, many caspases also have non-apoptotic roles in other physiological processes, such as inflammation, necrosis and tumor suppression.2, 3, 4 The most highly conserved caspase, caspase-2, has recently been demonstrated to function in the cellular stress response, protection against ageing, maintenance of genome stability and in tumor suppression.2, 5, 6, 7, 8The tumor suppressor function of caspase-2 was first demonstrated using E1A/Ras-transformed caspase-2-deficient mouse embryonic fibroblasts (MEFs), which showed an increased tumorigenic potential in athymic nude mice.7 Further supporting evidence came from experiments demonstrating that caspase-2 deficiency enhances B-cell lymphoma development in Eμ-Myc transgenic mice7 and mammary carcinomas in MMTV/c-neu mice,9 suggesting that caspase-2 prevents oncogene-induced lymphomas and epithelial tumors. Importantly, tumor suppression by caspase-2 is also evident in the non-oncogene-driven Atm−/− thymoma mouse model.10Given its role in apoptosis, the tumor suppression function of caspase-2 was thought to be associated with this role, via the elimination of mutagenic or potentially tumorigenic cells. Recent studies have now indicated that the role of caspase-2 may extend beyond apoptosis and that its tumor suppression function may, in part, be mediated by maintaining genomic stability and/or the oxidative stress response. Caspase-2-deficient MEFs and tumor cells from Eμ-Myc/Casp2−/−, MMTV/c-neu/Casp2−/− and Atm−/−;Casp2−/− mice all display aberrant proliferation, and increased genomic instability6, 9, 10 and indicate that caspase-2 is important for the maintenance of genome stability. Importantly, the role of caspase-2 in maintaining genomic stability in primary cells appears to be required for its tumor suppressor function.10Genomic instability is a hallmark of cancer11 and the overexpression of Myc family oncoproteins is commonly associated with genomic instability and a wide spectrum of human cancers.12, 13, 14 Interestingly, a common feature of the oncogene-induced tumor models used in the study of caspase-2 tumor suppressor function is the overexpression of c-Myc15 or aberrant c-Myc signaling.16, 17, 18 Given the role of Myc proteins as key mediators of genomic instability as well as cell proliferation, cell growth and DNA damage, we were interested in further assessing whether caspase-2 can promote tumor suppression in other MYC-dependent mouse tumor models. We used the MYCN mouse model of neuroblastoma (TH-MYCN mouse), in which MYCN is constitutively expressed under the control of the rat tyrosine hydroxylase (TH) promoter leading to neural crest cell-specific expression and early-onset neuroblastoma.19 Amplification of MYCN occurs in ∼20% of human neuroblastomas and high MYCN protein levels are strongly associated with tumor progression and poor clinical outcome.20, 21 Thus, the TH-MYCN transgenic mouse model recapitulates many clinical features of aggressive neuroblastomas in humans and provides a powerful model of preclinical neuroblastoma.19, 22MYCN-mediated neuroblastoma onset and progression is commonly associated with additional genetic events, including the expression of the key genes including Odc1, Mrp1, SirT1 and Ras.23, 24, 25 A recent study has found that caspase-8 is in fact a potent suppressor of neuroblastoma, with the loss of caspase-8 expression occurring in ∼70% of neuroblastoma patients.26, 27 Interestingly, the loss of caspase-8 also promotes bone marrow metastasis in the TH-MYCN neuroblastoma mouse model.26, 27 The role of other caspases in neuroblastoma has not previously been examined, and given the function of caspase-2 in tumor suppression, provided additional relevance in assessing its role in this model.This study shows that caspase-2 is not able to suppress neuroblastoma development in TH-MYCN mice. In contrast to a role for caspase-2 as a tumor suppressor, our findings demonstrate that loss of caspase-2 somewhat delays neuroblastoma onset in mice. Interestingly, expression array data from human neuroblastoma show a strong correlation between low caspase-2 levels and improved outcome. Our data demonstrate that the tumor suppressor function of caspase-2 is not specific to Myc-mediated oncogenesis and that its role is likely to be tissue- and/or context-specific. 相似文献
22.
De novo alanine synthesis by bacteroids of Mesorhizobium loti is not required for nitrogen transfer in the determinate nodules of Lotus corniculatus 下载免费PDF全文
Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product. 相似文献
23.
Singh J Shaik B Singh S Sikhima S Agrawal VK Khadikar PV Supuran CT 《Bioorganic & medicinal chemistry》2007,15(20):6501-6509
The first QSAR study on the activation of the human secretory isoform of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI, with a series of amines and amino acids is reported. A large set of topological indices have been used to obtain several tri-/tetra-parametric models. We compared the CA VI activating QSAR models with those calculated for activation of the cytosolic human isozymes hCA I and hCA II. In addition, the effect of D- and L-amino acids as activators of hCA I, hCA II and of hCA VI as compared to those of structurally related biogenic amines was investigated for obtaining statistically significant and predictive QSAR equations. The obtained models are discussed using a variety of statistical parameters. The best models were obtained for hCA II activation, followed by hCA I, whereas the QSAR models for the activation of hCA VI were statistically weaker. 相似文献
24.
Sagar BM Rentala S Gopal PN Sharma S Mukhopadhyay A 《Biochemical and biophysical research communications》2006,350(4):1000-1005
To test the hypothesis that extracellular matrix (ECM) components maintain stem cell property, murine bone marrow (BM) cells were expanded in fibronectin and laminin coated plate in the presence of cytokines. We observed significant phenotypic and functional improvement of expanded cells. In 10 days, 800-fold expansion of colony-forming unit-granulocyte erythrocyte monocyte megakaryocyte (CFU-GEMM) was observed in the cultured cells. No apparent activation of cell cycle was observed, but CD29 and very late antigen-4 (VLA-4) expression was increased, as compared to the normal BM cells. A fraction of the expanded cells became verapamil sensitive, suggesting upregulation of multi-drug resistant gene(s), as found in the primitive hematopoietic stem cells (HSCs). Competitive repopulation assay confirmed that HSCs compartment was amplified during culture. Overall, our study clearly demonstrated that ex vivo culture of murine HSCs in the presence of fibronectin and laminin resulted in expansion of primitive stem cells and improvement in the marrow engraftibility. 相似文献
25.
Polypyrimidine tract binding protein blocks the 5' splice site-dependent assembly of U2AF and the prespliceosomal E complex 总被引:2,自引:0,他引:2
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons. 相似文献
26.
Variam Ullas Jean kumar Ömer Poyraz Shalini Saxena Robert Schnell Perumal Yogeeswari Gunter Schneider Dharmarajan Sriram 《Bioorganic & medicinal chemistry letters》2013,23(5):1182-1186
Cysteine biosynthesis in Mycobacterium tuberculosis (MTB) is crucial for this pathogen to combat oxidative stress and for long term survival in the host. Hence inhibition of this pathway is attractive for developing novel drugs against tuberculosis. In the present study, the crystal structure of the mycobacterial enzyme O-acetylserine sulfhydrylase CysK1 bound to an oligopeptide inhibitor was used as a framework for virtual screening of the BITS-Pilani in-house database to identify new scaffolds as CysK1 inhibitors. Thirty compounds were synthesized and evaluated in vitro for their ability to inhibit CysK1, activity against M. tuberculosis and cytotoxicity as steps towards the derivation of structure–activity relationships (SAR) and lead optimization. Compound 8-nitro-4-(2-(trifluoromethyl)phenyl)-4,4a-dihydro-2H-pyrimido[5,4-e]thiazolo[3,2-a]pyrimidine-2,5(3H)-dione (4n) emerged as the most promising lead with an IC50 of 17.7 μM for purified CysK1 and MIC of 7.6 μM for M. tuberculosis, with little or no cytotoxicity (>50 μM). 相似文献
27.
Ghosh S Tiwari P Pandey S Misra AK Chaturvedi V Gaikwad A Bhatnagar S Sinha S 《Bioorganic & medicinal chemistry letters》2008,18(14):4002-4005
A series of glycosyl thioacetamide and glycosyl sulfonyl acetamide derivatives have been prepared following a convenient reaction protocol and evaluated for their antitubercular activity against Mycobacterium tuberculosis H37Rv. Amongst 32 compounds evaluated 3 compounds were effective in inhibiting mycobacterial growth at MIC of 6.25 μg/mL, 6 compounds at MIC of 3.125 μg/mL and 1 compound at MIC of 1.56 μg/mL. All active compounds were found nontoxic in Vero cell lines and mice bone marrow macrophages. 相似文献
28.
29.
30.