首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   21篇
  2024年   1篇
  2023年   4篇
  2022年   16篇
  2021年   20篇
  2020年   9篇
  2019年   17篇
  2018年   12篇
  2017年   11篇
  2016年   20篇
  2015年   23篇
  2014年   33篇
  2013年   44篇
  2012年   43篇
  2011年   40篇
  2010年   20篇
  2009年   21篇
  2008年   26篇
  2007年   26篇
  2006年   25篇
  2005年   19篇
  2004年   19篇
  2003年   9篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有502条查询结果,搜索用时 22 毫秒
11.
Cysteine biosynthesis in Mycobacterium tuberculosis (MTB) is crucial for this pathogen to combat oxidative stress and for long term survival in the host. Hence inhibition of this pathway is attractive for developing novel drugs against tuberculosis. In the present study, the crystal structure of the mycobacterial enzyme O-acetylserine sulfhydrylase CysK1 bound to an oligopeptide inhibitor was used as a framework for virtual screening of the BITS-Pilani in-house database to identify new scaffolds as CysK1 inhibitors. Thirty compounds were synthesized and evaluated in vitro for their ability to inhibit CysK1, activity against M. tuberculosis and cytotoxicity as steps towards the derivation of structure–activity relationships (SAR) and lead optimization. Compound 8-nitro-4-(2-(trifluoromethyl)phenyl)-4,4a-dihydro-2H-pyrimido[5,4-e]thiazolo[3,2-a]pyrimidine-2,5(3H)-dione (4n) emerged as the most promising lead with an IC50 of 17.7 μM for purified CysK1 and MIC of 7.6 μM for M. tuberculosis, with little or no cytotoxicity (>50 μM).  相似文献   
12.
The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were “selected” from a pre-existing pool rather than through de novo mutation and subsequent population fixation.  相似文献   
13.
Covalent organic frameworks (COFs) are crystalline organic polymers with tunable structures. Here, a COF is prepared using building units with highly flexible tetrahedral sp3 nitrogens. This flexibility gives rise to structural changes which generate mesopores capable of confining very small (<2 nm sized) non‐noble‐metal‐based nanoparticles (NPs). This nanocomposite shows exceptional activity toward the oxygen‐evolution reaction from alkaline water with an overpotential of 258 mV at a current density of 10 mA cm?2. The overpotential observed in the COF‐nanoparticle system is the best in class, and is close to the current record of ≈200 mV for any noble‐metal‐free electrocatalytic water splitting system—the Fe–Co–Ni metal‐oxide‐film system. Also, it possesses outstanding kinetics (Tafel slope of 38.9 mV dec?1) for the reaction. The COF is able to stabilize such small‐sized NP in the absence of any capping agent because of the COF–Ni(OH)2 interactions arising from the N‐rich backbone of the COF. Density‐functional‐theory modeling of the interaction between the hexagonal Ni(OH)2 nanosheets and the COF shows that in the most favorable configuration the Ni(OH)2 nanosheets are sandwiched between the sp3 nitrogens of the adjacent COF layers and this can be crucial to maximizing their synergistic interactions.  相似文献   
14.
Several studies have supported the hypoxia mimetic roles and cytoprotective properties of cobalt chloride in vitro and in vivo. However, a clear understanding of biological process-based mechanism that integrates the available information remains unknown. This study was aimed to explore the potential mechanism of cobalt chloride deciphering its benefits and well-known physiological challenge caused by hypobaric hypoxia that reportedly affects nearly 24 % of the global population. In order to explore the mechanism of CoCl2, we used global proteomic and systems biology approach in rat model to provide a deeper insight into molecular mechanisms of preconditioning. Furthermore, key conclusions were drawn based on biological network analysis and their enrichment with ontological overlaps. The study was further strengthened by consistent identification of validation of proteins using immunoblotting. CoCl2-pretreated animals exposed to hypoxia showed two significant networks, one lipid metabolism and other cell cycle associated, with a total score of 23 and eight focus molecules. In this study, we delineated two primary routes: one, by direct modulation of reactive oxygen species metabolism and, second, by regulation of lipid metabolism which was not known until now. The previously known benefits of cobalt chloride during physiological challenge by hypobaric hypoxia are convincing and could be explained by some basic set of metabolic and molecular reorganization within the hypoxia model. Interestingly, we also observed some of the completely unknown roles of cobalt chloride such as regulation of lipid that could undulate the translational roles of cobalt chloride supplementation beyond hypoxia preconditioning.  相似文献   
15.
Crows (Corvus splendens) and white herons (Ardea alba) inhabit the agricultural landscapes nearby human habitats which represent dynamic ecosystem and show seasonal crop patterns. We studied the movement pattern in these birds at dawn and dusk, during solstices (December and June) and equinoxes (March and September). The movement directions were changed from uniform at dawn to a concentrated distribution at dusk all along the season suggesting that morning movements are more exploratory than evening with seasonal differences. Differential use of directions in December than June could be the effect of temperature, food availability or wind direction and speed. During breeding, less number of directions used suggests that birds might be moving towards the directions having high probability of food availability. It is likely that avian dispersal in space and time is dependent on the food availability however, further studies are required to be carried out.  相似文献   
16.
Background and aims: High-sensitivity C-reactive protein (hs CRP) has emerged as an inflammatory biomarker to predict metabolic syndrome. Here, we investigate the association of hs CRP with metabolic variables and determine the risks for elevated hs CRP levels in healthy Singaporean adults.

Methods: We conducted a cross-sectional study of 225 participants (104 men). The levels of hs CRP and fasting lipid parameters were analyzed by COBAS. Body composition was determined with dual-energy X-ray absorptiometry.

Results: Twenty-one (9?%) participants had elevated hs CRP levels (>3?mg/mL). The levels of hs CRP had significant correlations (p?<0.05) with obesity and metabolic variables among women. Stepwise multivariate regression analysis identified FM (%) (accounted for 22.5% of the variability in hs CRP levels) as a major determinant of hs CRP levels. On multivariate regression, FM (%) was the independent determinant of intermediate and elevated hs CRP in women after adjustment for the potential confounders.

Conclusions: Obesity may play a direct role in the elevated hs CRP levels in women, but not men living in Singapore. This is probably due to different body composition or different effects of sex hormones on adipose tissue between men and women.  相似文献   

17.
Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248‐286 was found to be the most active and was termed as semen‐derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248‐286 significantly differs from the other known amyloidogenic peptides, including Aβ and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC), on PAP248‐286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248‐286. Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C‐terminus are crucial for PAP248‐286 aggregation and are anticipated to be major DOPC‐interacting partners. Therefore, we further assessed the aggregation behaviour of C‐terminal (PAP273‐286) fragment of PAP248‐286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to β‐sheet transition.  相似文献   
18.
Pheromone peptides are an important component of bacterial quorum‐sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid‐like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug‐resistant pathogenic strains.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号