首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
The effect of nutrients and growth conditions on the accumulation of glutamyl endopeptidase in the culture liquid ofBacillus intermedius 3–19 was studied. Glucose and other readily metabolizable carbon sources were found to suppress the production of the enzyme, whereas inorganic phosphate and ammonium cations enhanced it. Protein substrates, such as casein, gelatin, and hemoglobin, did not affect enzyme production. Some bivalent cations (Ca2+, Mg2+, Co2+) increased the production of glutamyl endopeptidase, but others (Zn2+, Fe2+, Cu2+) acted in the opposite way. The rate of enzyme accumulation in the culture liquid increased as the growth rate of the bacterium decreased, so that the maximum enzyme activity was observed in the stationary growth phase. Based on the results of this investigation, an optimal medium for the maximum production of glutamyl endopeptidase byB. intermedius 3–19 was elaborated.  相似文献   
12.
Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features.  相似文献   
13.
14.
15.
Russian Journal of Plant Physiology - Transgenic plants containing genes of bacterial phytases represent one of the promising ways to solve the problem of phosphorus deficiency in the nutrition of...  相似文献   
16.
17.
18.
19.
Associative nitrogen-fixing bacteria have been isolated, which were related to Azospirillum genus, by their morphological–cultural and physiological–biochemical ability to grow in microaerophilic conditions, as well as by a number of phenotypic traits. They comprised two species, namely, Azospirillum brasilense and Azospirillum lipoferum. Azospirilli strains displayed a varying salt resistance on potato medium containing a range of NaCl concentrations from 100 to 800 mM. The decrease in the nitrogen-fixing activity of azospirilli was detected starting from 200 mM NaCl. The biomass of the inoculated local varieties of wheat, Unumdor Bugdoi and Karlik 85, in microvegetation experiments exceeded the biomass of control plants by 20–50%. During the vegetation, some azospirilli strains formed spontaneous nodules on the wheat roots.  相似文献   
20.
In vertebrates, the single-stranded telomeric DNA binding protein Protection of Telomeres 1 (POT1) shields chromosome ends and prevents them from eliciting a DNA damage response. By contrast, Arabidopsis thaliana encodes two divergent full-length POT1 paralogs that do not exhibit telomeric DNA binding in vitro and have evolved to mediate telomerase regulation instead of chromosome end protection. To further investigate the role of POT1 in plants, we established the moss Physcomitrella patens as a new model for telomere biology and a counterpoint to Arabidopsis. The sequence and architecture of the telomere tract is similar in P. patens and Arabidopsis, but P. patens harbors only a single-copy POT1 gene. Unlike At POT1 proteins, Pp POT1 efficiently bound single-stranded telomeric DNA in vitro. Deletion of the P. patens POT1 gene resulted in the rapid onset of severe developmental defects and sterility. Although telomerase activity levels were unperturbed, telomeres were substantially shortened, harbored extended G-overhangs, and engaged in end-to-end fusions. We conclude that the telomere capping function of POT1 is conserved in early diverging land plants but is subsequently lost in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号