首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   3篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   4篇
  2015年   9篇
  2014年   2篇
  2013年   9篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   15篇
  2008年   7篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1966年   3篇
排序方式: 共有164条查询结果,搜索用时 876 毫秒
11.
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (相似文献   
12.

Background

The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.

Methodology/Principal Findings

In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.

Conclusions/Significance

We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.  相似文献   
13.
Aim:  To evaluate the effect of starvation, heat, cold, acid, alkaline, chlorine and ethanol stresses on the resistance of Enterobacter sakazakii in powdered infant milk formula (PIMF) towards gamma radiation.
Methods and Results:  Stressed cells of E. sakazakii ATCC 51329 and four other food isolate strains were mixed individually with PIMF, kept overnight at room temperature, and then exposed to gamma radiation up to 7·5 kGy. The D 10-values were determined using linear regression and for the stressed E. sakazakii strains these values ranged from 0·82 to 1·95 kGy.
Conclusions:  Environmental stresses did not significantly change the sensitivity of most E. sakazakii strains to ionizing radiation.
Significance and Impact of the Study:  Data obtained established that most forms of environmental stress are unlikely to significantly enhance the resistance of E. sakazakii strains to lethal, low dose irradiation treatment.  相似文献   
14.
The cingulate and insular cortices are parts of the limbic system that process and modulate gastrointestinal sensory signals. We hypothesized that sensitization of these two limbic area may operate in esophageal sensitization. Thus the objective of the study was to elucidate the neurocognitive processing in the cingulate and insular cortices to mechanical stimulation of the proximal esophagus following infusion of acid or phosphate buffer solution (PBS) into the esophagus. Twenty-six studies (14 to acid and 12 to PBS infusion) were performed in 20 healthy subjects (18-35 yr) using high-resolution (2.5 x 2.5 x 2.5 mm(3) voxel size) functional MRI (fMRI). Paradigm-driven, 2-min fMRI scans were performed during randomly timed 15-s intervals of proximal esophageal barostatically controlled distentions and rest, before and after 30-min of distal esophageal acid or PBS perfusion (0.1 N HCl or 0.1 M PBS at 1 ml/min). Following distal esophageal acid infusion, at subliminal and liminal levels of proximal esophageal distentions, the number of activated voxels in both cingulate and insular cortices showed a significant increase compared with before acid infusion (P < 0.05). No statistically significant change in cortical activity was noted following PBS infusion. We conclude that 1) acid stimulation of the esophagus results in sensitization of the cingulate and insular cortices to subliminal and liminal nonpainful mechanical stimulations, and 2) these findings can have ramifications with regard to the mechanisms of some esophageal symptoms attributed to reflux disease.  相似文献   
15.
Background

Colorectal cancer (CRC) is major aliment around the word, with a cumulative rate of mortality. Metformin (MT) was recently approved as anticancer drug against solid tumors, such as CRC. Resistance to MT therapy remains to be a challenging matter facing the development of possible anti-cancer strategy. To circumvent this problem, MT nano-encapsulation has been introduced to sensitize resistant cancer cells. The purpose of the current study is to explore the MT's aptitude encapsulated in lecithin (LC) and chitosan (CS) nanoparticles to inhibit CRC proliferation through modulations of long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and some biochemical markers.

Methods and results

Cytotoxic screenings of the newly synthesized MT-based regimens; MT, MT-LC NPs (NP1), MT-CS NPs (NP2), and MT-LC-CS NPs (NP3) against colorectal cancerous Caco-2 and HCT116 cell lines versus normal WI-38 cells were performed. The epigenetic mechanistic effects of these proposed regimens on lncRNAs and miRNAs were investigated. Additionally, some protein levels were assessed in CRC cells upon treatments; YKL-40, PPARγ, E-cadherin (ECN), and VEGF. We resulted that NP1 recorded the highest significant cytotoxic effect on CRC cells. HCT116 cells were more sensitive to the NP1 compared to Caco-2 cells. Intriguingly, it was suggested that NP1 tackled the CRC cells through down-regulation of the H19, HOTTIP, HULC, LINC00641, miR-200, miR‐92a, miR-21, YKL-40, PPARγ, and VEGF expressions, as well as up-regulation of the miR-944 and ECN expressions.

Conclusions

We concluded that the NP1 can potentially be cytotoxic to CRC cells in-vitro by modulating noncoding RNA.

  相似文献   
16.
In the angiogenesis process, integrins, which are members of a family of cell surface transmembrane receptors, play a critical role particularly in blood vessel formation and the local release of vascular growth factors. Thyroid hormones such as l-thyroxine (T4) and 3,5,3′-triiodo-l-thyronine (T3) promote angiogenesis and tumor cell proliferation via integrin αvβ3 receptor. At or near an arginine-glycine-aspartate (RGD) recognition site on the binding pocket of integrin αvβ3, tetraiodothyroacetic acid (tetrac, a deaminated derivative of T4) is a thyrointegrin receptor antagonist and blocks the actions of T3 and T4 as well as different growth factors-mediated angiogenesis. In this study, we synthesized novel tetrac analogs by modifying the phenolic moiety of tetrac and tested them for their anti-angiogenesis activity using a Matrigel plug model for angiogenesis in mice. Pharmacological activity results showed that tetrac can accommodate numerous modifications and maintain its anti-angiogenesis activity.  相似文献   
17.
The exhaled breath condensate (EBC) method represents a new, noninvasive way to detect inflammatory and metabolic markers in the fluid that covers the airways [epithelial lining fluid (ELF)]. However, respiratory droplets represent only a very small and variable fraction of the EBC, most (approximately 99.99%) of which is water vapor. Our objective was to show that ELF concentrations could be calculated from EBC values by using any of three dilutional indicators (urea, total cations, and conductivity) in nine normal and nine chronic obstructive lung disease (COPD) subjects. EBC concentrations of Na(+), K(+), Ca(2+), Mg(2+), total cations, urea, and conductivity varied over a 10-fold range among individuals, but concentrations of these constituents (except Ca(2+)) remained well correlated (r(2) = 0.44-0.83, P < 0.001). Dilution (D) of respiratory droplets in water vapor was calculated by dividing plasma concentrations of the dilutional indicators by EBC concentrations. Estimates of D were not significantly different among these indicators, and urea D averaged 10,800 +/- 2,100 (SE) in normal and 12,600 +/- 3,300 in COPD subjects. Although calculated Na(+) concentrations in the ELF were less than one-half those in plasma, and concentrations of K(+), Ca(2+), and Mg(2+) exceeded those in plasma, total cation concentrations in ELF were not significantly different from those in plasma, indicating that ELF is isotonic in both normal and COPD subjects. EBC amylase concentrations (measured with an ultrasensitive procedure) indicated that saliva represented <10% of the respiratory (ELF) droplets in all but three samples. Dilutional and salivary markers are essential for interpretation of EBC studies.  相似文献   
18.
EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multiomics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx-Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2-BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC.  相似文献   
19.
20.
Chu F  Chou P  Mirkin BL  Mousa SA  Rebbaa A 《Aging cell》2008,7(4):516-525
Evidence is accumulating that chromatin plays a major role in the control of cellular response to stress. This is best illustrated by the recent findings that chromatin-modifying factors of class III histone deacetylases (sirtuins) are capable of protecting cells from oxidative and genotoxic stress. In particular, Sirt1 has been shown to mimic the action of caloric restriction for the prevention of aging-associated diseases. In the present study, we have investigated the potential role of class I and II histone deacetylases (HDACs) in cellular protection against various stresses, including those caused by nutrient deprivation. For this, we utilized a cellular model in which expression of class I and II HDACs was altered as a result of cellular adaptation to trichostatin A (TSA), a selective inhibitor of these deacetylases. Our results indicated that TSA-resistant cells also developed resistance to H2O2, DNA-damaging agents, and to nutrient deprivation. Interestingly, the insulin signaling pathway mediated by Akt was inhibited in the TSA-resistant cells, mirroring the effect of glucose deprivation on this pathway. Since expression of HDAC4 was consistently enhanced in the TSA-resistant cell lines, we suggest that this enzyme may contribute to their anti-stress response. In agreement with this, siRNA-mediated knockdown of HDAC4 in stress-resistant cells enhanced their sensitivity to the DNA-damaging drug doxorubicin and also to glucose deprivation. Akt phosphorylation was also up-regulated in response to HDC4 knockdown. Together, these findings suggest that cellular conditioning with TSA may represent a useful approach to mimic the effects of caloric restriction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号