首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  63篇
  2023年   5篇
  2022年   10篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2013年   4篇
  2012年   5篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1987年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有63条查询结果,搜索用时 0 毫秒
51.
52.
Recent work has revealed random chromosome pairing and assortment in Saccharum spontaneum L., the most widely distributed, and morphologically and cytologically variable of the species of Saccharum. This conclusion was based on the analysis of a segregating population from across between S. spontaneum SES 208 and a spontaneously-doubled haploid of itself, derived from anther culture. To determine whether polysomic inheritance is common in Saccharum and whether it is observed in a typical biparental cross, we studied chromosome pairing and assortment in 44 progeny of a cross between euploid, meiotically regular, 2n=80 forms of Saccharum officinarum LA Purple and Saccharum robustum Mol 5829. Papuan 2n=80 forms of S. robustum have been suggested as the immediate progenitor species for cultivated sugarcane (S. officinarum). A total of 738 loci in LA Purple and 720 loci in Mol 5829 were amplified and typed in the progeny by arbitrarily primed PCR using 45 primers. Fifty and 33 single-dose polymorphisms were identified in the S. officinarum and S. robustum genomes, respectively ( 2 at 98%). Linkage analysis of single-dose polymorphisms in both genomes revealed linkages in repulsion and coupling phases. In the S. officinarum genome, a map hypothesis gave 7 linkage groups with 17 linked and 33 unlinked markers. Four of 13 pairwise linkages were in repulsion phase and 9 were in coupling phase. In the S. robustum genome, a map hypothesis gave 5 linkage groups, defined by 12 markers, with 21 markers unlinked, and 2 of 9 pairwise linkages were in repulsion phase. Therefore, complete polysomic inheritance was not observed in either species, suggesting that chromosomal behavior is different from that observed by linkage analysis of over 500 markers in the S. spontaneum map. Implications of this finding for evolution and breeding are discussed.  相似文献   
53.
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4?>?lipid1?>?lipid2?>?lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (?Gbinding?=??2.17 and ?11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.  相似文献   
54.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.  相似文献   
55.
Molecular Biology Reports - Dromedary or one-humped camel (Camelus dromedarius) is distinctively acclimatized to survive the arid conditions of the desert environment. It has an excellent ability...  相似文献   
56.
Continual application of synthetic insecticides in controlling mosquito larvae has resulted in several problems as build-up of mosquito resistance beside to negative impacts on human health and environment. Discovering new and affordable bio-insecticidal agents with high efficiency, cost effective and target specific become a crucial need. The current study assessed the larvicidal activity of eight methanolic algal extracts belong to three different algal divisions against the 3rd larval instar of Culex pipiens L. (Diptera: Culicidae). Comparative studies showed that four species of red and green algal extracts exhibited good larvicidal activity. Galaxaura elongata and Jania rubens (Rhodophyta), Codium tomentosum and Ulva intestinales (Chlorophyta) showed higher larvicidal potencies than Padina boryana, Dictyota dichotoma, and Sargassum dentifolium (Phaeophyta) and Gelidium latifolium (Rhodophyta). The maximum level of toxicity was achieved by exposure to G. elongata extract with LC50 (31.13 ppm), followed by C. tomentosum (69.85 ppm) then J. rubens (84.82 ppm) and U. intestinalis (97.54 ppm), while the lowest toxicity exhibited by G. latifolium (297.38 ppm) at 72 h post- treatment. The application of LC50 values of G. elongate, J. rubens, C. tomentosum, and U. intestinalis extracts affected the activities of antioxidant enzymes viz. superoxide dismutase, catalase and glutathione peroxidase as oxidative stress markers. An increase of antioxidant enzymes activities was recorded. Therefore, a significant elimination of free radicals, causing toxic effects. Overall, this study casts light on the insecticidal activity of some algal extracts, suggesting the possibility of application of these bio- agents as novel and cost- effective larvicides.  相似文献   
57.
Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees. The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount. The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’ being gluttonous for water needs. This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG. As a result, drought stress reduced the morphological characteristics such as shoots number, shoot length, roots number, and survival percentage and biochemical characteristics such as chlorophyll a, b, carotenoids, stomatal status, and RWC. While proline content increased in the leaf of M. acuminata L. Media complemented with K2SiO3 (2 to 6 mM) either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics. The activities of CAT, POD, and PPO enzymes increased signifi- cantly compared to control. Furthermore, the lowest PPO, CAT, and POD activity were achieved. Additionally, K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior. Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.  相似文献   
58.
59.
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn) were synthesized and characterized by infrared (IR) and 1H nuclear magnetic resonance (1H NMR) spectra. The ligands (HLn) were in silico screened to their potential inhibition to models of d -alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3-treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3-treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.  相似文献   
60.
Molecular Biology Reports - Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19)....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号