首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   41篇
  568篇
  2024年   2篇
  2022年   6篇
  2021年   12篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   3篇
  2016年   9篇
  2015年   19篇
  2014年   17篇
  2013年   27篇
  2012年   37篇
  2011年   31篇
  2010年   27篇
  2009年   25篇
  2008年   34篇
  2007年   41篇
  2006年   35篇
  2005年   29篇
  2004年   28篇
  2003年   23篇
  2002年   22篇
  2001年   11篇
  2000年   10篇
  1999年   14篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1993年   2篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有568条查询结果,搜索用时 9 毫秒
51.
52.
53.
Most organisms possess “biological chronometers” in the form of circadian clocks. Organism possessing circadian clock gains fitness advantage in two ways, by synchronizing its behavior through physiological process and secondly by coordinating its internal metabolic process. Environmental manipulations of circadian clocks have been shown to affect many life-history-related traits. Life-history traits are important components of fitness. To enhance individual fitness, organism has to synchronize the physiology with the surrounding environment. The present investigations were made to understand whether rhythm changes affect fitness of two co-existing species of montium a subgroup of Drosophila. The stocks were maintained at 20 ± 1 °C with 75% RH. Fitness such as fecundity, male lifetime fertility, female lifetime fertility, and longevity was assessed in LD (light/dark), LL (continuous light), and DD (continuous dark) for 15 and 30th generations. Fecundity was assessed in 25 pairs of flies for 20 days, and fertility and longevity was assessed in 10 pairs of flies until lifetime. The result revealed differential effect of light regimes on the two different species of Drosophila. Although the two species are related, effect of the three light regimes, LD, LL, and DD on them was different. It is evident that these two species although genetically related exhibit different responses to different light regimes.  相似文献   
54.
Zheng L  Dai H  Hegde ML  Zhou M  Guo Z  Wu X  Wu J  Su L  Zhong X  Mitra S  Huang Q  Kernstine KH  Pfeifer GP  Shen B 《Cell research》2011,21(7):1052-1067
DNA replication and repair are critical processes for all living organisms to ensure faithful duplication and transmission of genetic information. Flap endonuclease 1 (Fen1), a structure-specific nuclease, plays an important role in multiple DNA metabolic pathways and maintenance of genome stability. Human FEN1 mutations that impair its exonuclease activity have been linked to cancer development. FEN1 interacts with multiple proteins, including proliferation cell nuclear antigen (PCNA), to form various functional complexes. Interactions with these proteins are considered to be the key molecular mechanisms mediating FEN1's key biological functions. The current challenge is to experimentally demonstrate the biological consequence of a specific interaction without compromising other functions of a desired protein. To address this issue, we established a mutant mouse model harboring a FEN1 point mutation (F343A/F344A, FFAA), which specifically abolishes the FEN1/PCNA interaction. We show that the FFAA mutation causes defects in RNA primer removal and long-patch base excision repair, even in the heterozygous state, resulting in numerous DNA breaks. These breaks activate the G2/M checkpoint protein, Chk1, and induce near-tetraploid aneuploidy, commonly observed in human cancer, consequently elevating the transformation frequency. Consistent with this, inhibition of aneuploidy formation by a Chk1 inhibitor significantly suppressed the cellular transformation. WT/FFAA FEN1 mutant mice develop aneuploidy-associated cancer at a high frequency. Thus, this study establishes an exemplary case for investigating the biological significance of protein-protein interactions by knock-in of a point mutation rather than knock-out of a whole gene.  相似文献   
55.
56.
Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.  相似文献   
57.
58.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.  相似文献   
59.
The efficiency of protein compartmentalization into the secretory pathway   总被引:4,自引:0,他引:4  
Numerous proteins targeted for the secretory pathway are increasingly implicated in functional or pathological roles at alternative cellular destinations. The parameters that allow secretory or membrane proteins to reside in intracellular locales outside the secretory pathway remain largely unexplored. In this study, we have used an extremely sensitive and quantitative assay to measure the in vivo efficiency of signal sequence-mediated protein segregation into the secretory pathway. Our findings reveal that segregation efficiency varies tremendously among signals, ranging from >95 to <60%. The nonsegregated fraction is generated by a combination of mechanisms that includes inefficient signal-mediated translocation into the endoplasmic reticulum and leaky ribosomal scanning. The segregation efficiency of some, but not other signal sequences, could be influenced in cis by residues in the mature domain or in trans by yet unidentified cellular factors. These findings imply that protein compartmentalization can be modulated in a substrate-specific manner to generate biologically significant quantities of cytosolically available secretory and membrane proteins.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号