首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   27篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   16篇
  2020年   13篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   19篇
  2014年   20篇
  2013年   19篇
  2012年   36篇
  2011年   35篇
  2010年   10篇
  2009年   20篇
  2008年   8篇
  2007年   14篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   10篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1977年   3篇
  1976年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
21.
Strong electron‐donating functionality is desirable for many organic donor‐π‐bridge‐acceptor (D‐π‐A) dyes. Strategies for increasing the electron‐donating strength of common nitrogen‐based donors include planarization of nitrogen substituents and the use of low resonance‐stabilized energy aromatic ring‐substituted nitrogen atoms. Organic donor motifs based on the planar nitrogen containing heterocycle indolizine are synthesized and incorporated into dye‐sensitized solar cell (DSC) sensitizers. Resonance active substitutions at several positions on indolizine in conjugation with the D‐π‐A π‐system are examined computationally and experimentally. The indolizine‐based donors are observed to contribute electron density with strengths greater than triarylamines and diarylamines, as evidenced by UV/Vis, IR absorptions, and oxidation potential measurements. Fluorescence lifetime studies in solution and on TiO2 yield insights in understanding the performance of indolizine‐based dyes in DSC devices.  相似文献   
22.

Background

Changes in tumor DNA mutation status during chemotherapy can provide insights into tumor biology and drug resistance. The purpose of this study is to analyse the presence or absence of mutations in cancer-related genes using baseline breast tumor samples and those obtained after exposure to one cycle of chemotherapy to determine if any differences exist, and to correlate these differences with clinical and pathological features.

Methods

Paired breast tumor core biopsies obtained pre- and post-first cycle doxorubicin (n = 18) or docetaxel (n = 22) in treatment-naïve breast cancer patients were analysed for 238 mutations in 19 cancer-related genes by the Sequenom Oncocarta assay.

Results

Median age of patients was 48 years (range 32–64); 55% had estrogen receptor-positive tumors, and 60% had tumor reduction ≥25% after cycle 1. Mutations were detected in 10/40 (25%) pre-treatment and 11/40 (28%) post-treatment samples. Four mutation pattern categories were identified based on tumor mutation status pre- → post-treatment: wildtype (WT)→WT, n = 24; mutant (MT)→MT, n = 5; MT→WT, n = 5; WT→MT, n = 6. Overall, the majority of tumors were WT at baseline (30/40, 75%), of which 6/30 (20%) acquired new mutations after chemotherapy. Pre-treatment mutations were predominantly in PIK3CA (8/10, 80%), while post-treatment mutations were distributed in PIK3CA, EGFR, PDGFRA, ABL1 and MET. All 6 WT→MT cases were treated with docetaxel. Higher mutant allele frequency in baseline MT tumors (n = 10; PIK3CA mutations n = 8) correlated with less tumor reduction after cycle 1 chemotherapy (R = -0.667, p = 0.035). No other associations were observed between mutation pattern category with treatment, clinicopathological features, and tumor response or survival.

Conclusion

Tumor mutational profiles can change as quickly as after one cycle of chemotherapy in breast cancer. Understanding of these changes can provide insights on potential therapeutic options in residual resistant tumors.

Trial Registration

ClinicalTrials.gov NCT00212082  相似文献   
23.
The first QSAR study on the activation of the human secretory isoform of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI, with a series of amines and amino acids is reported. A large set of topological indices have been used to obtain several tri-/tetra-parametric models. We compared the CA VI activating QSAR models with those calculated for activation of the cytosolic human isozymes hCA I and hCA II. In addition, the effect of D- and L-amino acids as activators of hCA I, hCA II and of hCA VI as compared to those of structurally related biogenic amines was investigated for obtaining statistically significant and predictive QSAR equations. The obtained models are discussed using a variety of statistical parameters. The best models were obtained for hCA II activation, followed by hCA I, whereas the QSAR models for the activation of hCA VI were statistically weaker.  相似文献   
24.
25.

Background

Next-generation sequencing technology provides a means to study genetic exchange at a higher resolution than was possible using earlier technologies. However, this improvement presents challenges as the alignments of next generation sequence data to a reference genome cannot be directly used as input to existing detection algorithms, which instead typically use multiple sequence alignments as input. We therefore designed a software suite called REDHORSE that uses genomic alignments, extracts genetic markers, and generates multiple sequence alignments that can be used as input to existing recombination detection algorithms. In addition, REDHORSE implements a custom recombination detection algorithm that makes use of sequence information and genomic positions to accurately detect crossovers. REDHORSE is a portable and platform independent suite that provides efficient analysis of genetic crosses based on Next-generation sequencing data.

Results

We demonstrated the utility of REDHORSE using simulated data and real Next-generation sequencing data. The simulated dataset mimicked recombination between two known haploid parental strains and allowed comparison of detected break points against known true break points to assess performance of recombination detection algorithms. A newly generated NGS dataset from a genetic cross of Toxoplasma gondii allowed us to demonstrate our pipeline. REDHORSE successfully extracted the relevant genetic markers and was able to transform the read alignments from NGS to the genome to generate multiple sequence alignments. Recombination detection algorithm in REDHORSE was able to detect conventional crossovers and double crossovers typically associated with gene conversions whilst filtering out artifacts that might have been introduced during sequencing or alignment. REDHORSE outperformed other commonly used recombination detection algorithms in finding conventional crossovers. In addition, REDHORSE was the only algorithm that was able to detect double crossovers.

Conclusion

REDHORSE is an efficient analytical pipeline that serves as a bridge between genomic alignments and existing recombination detection algorithms. Moreover, REDHORSE is equipped with a recombination detection algorithm specifically designed for Next-generation sequencing data. REDHORSE is portable, platform independent Java based utility that provides efficient analysis of genetic crosses based on Next-generation sequencing data. REDHORSE is available at http://redhorse.sourceforge.net/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1309-7) contains supplementary material, which is available to authorized users.  相似文献   
26.
27.
A series of novel conjugates of 4-aza-2,3-didehydropodophyllotoxins (11a-w) were synthesized by a straightforward one-step multicomponent synthesis that demonstrated cytotoxicity against five human cancer cell lines (breast, oral, colon, lung and ovarian). All the twenty three compounds (11a-w) have been examined for the inhibition of tubulin polymerization. Among these compounds, 11a, 11k and 11p exhibited inhibition of polymerization tubulin comparable to podophyllotoxin apart from disruption of microtubule organization within the cells. Flow cytometric analysis showed that these compounds (11a, 11k and 11p) arrested the cell cycle in the G2/M phase of cell cycle leading to caspase-3 dependent apoptotic cell death.  相似文献   
28.
29.
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.  相似文献   
30.
The APC/Cdh1 E3 ubiquitin ligase plays an essential role in both mitotic exit and G1/S transition by targeting key cell-cycle regulators for destruction. There is mounting evidence indicating that Cdh1 has other functions in addition to cell-cycle regulation. However, it remains unclear whether these additional functions depend on its E3 ligase activity. Here, we report that Cdh1, but not Cdc20, promotes the E3 ligase activity of Smurf1. This is mediated by disruption of an autoinhibitory Smurf1 homodimer and is independent of APC/Cdh1 E3 ligase activity. As a result, depletion of Cdh1 leads to reduced Smurf1 activity and subsequent activation of multiple downstream targets, including the MEKK2 signaling pathway, inducing osteoblast differentiation. Our studies uncover a cell-cycle-independent function of Cdh1, establishing Cdh1 as an upstream component that governs Smurf1 activity. They further suggest that modulation of Cdh1 is a potential therapeutic option for treatment of osteoporosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号