首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   50篇
  国内免费   1篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   7篇
  2016年   13篇
  2015年   28篇
  2014年   15篇
  2013年   35篇
  2012年   34篇
  2011年   28篇
  2010年   25篇
  2009年   22篇
  2008年   42篇
  2007年   45篇
  2006年   29篇
  2005年   22篇
  2004年   25篇
  2003年   22篇
  2002年   16篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有519条查询结果,搜索用时 46 毫秒
101.
Apoptosis, cell death characterized by stereotypical morphological features, requires caspase proteases. Nonapoptotic, caspase-independent cell death pathways have been postulated; however, little is known about their molecular constituents or in vivo functions. Here, we show that death of the Caenorhabditis elegans linker cell during development is independent of the ced-3 caspase and all known cell death genes. The linker cell employs a cell-autonomous death program, and a previously undescribed engulfment program is required for its clearance. Dying linker cells display nonapoptotic features, including nuclear crenellation, absence of chromatin condensation, organelle swelling, and accumulation of cytoplasmic membrane-bound structures. Similar features are seen during developmental death of neurons in the vertebrate spinal cord and ciliary ganglia. Linker cell death is controlled by the microRNA let-7 and Zn-finger protein LIN-29, components of the C. elegans developmental timing pathway. We propose that the program executing linker cell death is conserved and used during vertebrate development.  相似文献   
102.
Small nucleolar RNAs (snoRNAs) are a large group of noncoding RNAs that exist in eukaryotes and archaea and guide modifications such as 2'-O-ribose methylations and pseudouridylation on rRNAs and snRNAs. Recently, we described a genome-wide screening approach with Trypanosoma brucei that revealed over 90 guide RNAs. In this study, we extended this approach to analyze the repertoire of the closely related human pathogen Leishmania major. We describe 23 clusters that encode 62 C/Ds that can potentially guide 79 methylations and 37 H/ACA-like RNAs that can potentially guide 30 pseudouridylation reactions. Like T. brucei, Leishmania also contains many modifications and guide RNAs relative to its genome size. This study describes 10 H/ACAs and 14 C/Ds that were not found in T. brucei. Mapping of 2'-O-methylations in rRNA regions rich in modifications suggests the existence of trypanosomatid-specific modifications conserved in T. brucei and Leishmania. Structural features of C/D snoRNAs, such as copy number, conservation of boxes, K turns, and intragenic and extragenic base pairing, were examined to elucidate the great variation in snoRNA abundance. This study highlights the power of comparative genomics for determining conserved features of noncoding RNAs.  相似文献   
103.

Background

Alternative splicing (AS) functions to expand proteomic complexity and plays numerous important roles in gene regulation. However, the extent to which AS coordinates functions in a cell and tissue type specific manner is not known. Moreover, the sequence code that underlies cell and tissue type specific regulation of AS is poorly understood.

Results

Using quantitative AS microarray profiling, we have identified a large number of widely expressed mouse genes that contain single or coordinated pairs of alternative exons that are spliced in a tissue regulated fashion. The majority of these AS events display differential regulation in central nervous system (CNS) tissues. Approximately half of the corresponding genes have neural specific functions and operate in common processes and interconnected pathways. Differential regulation of AS in the CNS tissues correlates strongly with a set of mostly new motifs that are predominantly located in the intron and constitutive exon sequences neighboring CNS-regulated alternative exons. Different subsets of these motifs are correlated with either increased inclusion or increased exclusion of alternative exons in CNS tissues, relative to the other profiled tissues.

Conclusion

Our findings provide new evidence that specific cellular processes in the mammalian CNS are coordinated at the level of AS, and that a complex splicing code underlies CNS specific AS regulation. This code appears to comprise many new motifs, some of which are located in the constitutive exons neighboring regulated alternative exons. These data provide a basis for understanding the molecular mechanisms by which the tissue specific functions of widely expressed genes are coordinated at the level of AS.  相似文献   
104.
105.
106.
The MOM (mitochondrial outer membrane) contains SA (signal-anchored) proteins that bear at their N-terminus a single hydrophobic segment that serves as both a mitochondrial targeting signal and an anchor at the membrane. These proteins, like the vast majority of mitochondrial proteins, are encoded in the nucleus and have to be imported into the organelle. Currently, the mechanisms by which they are targeted to and inserted into the OM (outer membrane) are unclear. To shed light on these issues, we employed a recombinant version of the SA protein OM45 and a synthetic peptide corresponding to its signal-anchor segment. Both forms are associated with isolated mitochondria independently of cytosolic factors. Interaction with mitochondria was diminished when a mutated form of the signal-anchor was employed. We demonstrate that the signal-anchor peptide acquires an α-helical structure in a lipid environment and adopted a TM (transmembrane) topology within artificial lipid bilayers. Moreover, the peptide's affinity to artificial membranes with OM-like lipid composition was much higher than that of membranes with ER (endoplasmic reticulum)-like lipid composition. Collectively, our results suggest that SA proteins are specifically inserted into the MOM by a process that is not dependent on additional proteins, but is rather facilitated by the distinct lipid composition of this membrane.  相似文献   
107.
Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.  相似文献   
108.
109.
Human immunodeficiency virus 1 gp41 folds into a six-helix bundle whereby three C-terminal heptad repeat regions pack in an anti-parallel manner against the coiled-coil formed by three N-terminal heptad repeats (NHR). Peptides that inhibit bundle formation contributed significantly to the understanding of the entry mechanism of the virus. DP178, which partially overlaps C-terminal heptad repeats, prevents bundle formation through an undefined mechanism; additionally it has been suggested to bind other ENV regions and arrest fusion in an unknown manner. We used two structurally altered DP178 peptides; in each, two sequential amino acids were substituted into their d configuration, d-SQ in the hydrophilic N-terminal region and d-LW in the hydrophobic C-terminal. Importantly, we generated an elongated NHR peptide, N54, obtaining the full N-helix docking site for DP178. Interestingly, d-LW retained wild type fusion inhibitory activity, whereas d-SQ exhibited significantly reduced activity. In correlation with the inhibitory data, CD spectroscopy and fluorescence studies revealed that all the DP178 peptides interact with N54, albeit with different stabilities of the bundles. We conclude that strong binding of DP178 N-terminal region to the endogenous NHR, without significant contribution of the C-terminal sequence of DP178 to core formation, is vital for DP178 inhibition. The finding that d-amino acid incorporation in the C terminus did not affect activity or membrane binding as revealed by surface plasmon resonance correlates with an additional membrane binding site, or membrane anchoring role, for the C terminus, which works synergistically with the N terminus to inhibit fusion.  相似文献   
110.
Resistance to transgenic cotton, Gossypium hirsutum L., producing Bacillus thuringiensis (Bt) toxin Cry1Ac is linked with three recessive alleles of a cadherin gene in laboratory-selected strains of pink bollworm, Pectinophora gossypiella (Saunders), a major cotton pest. Here, we analyzed a strain (MOV97-R) with a high frequency of cadherin resistance alleles, a high frequency of resistance to 10 microg of Cry1Ac per milliliter of diet, and an intermediate frequency of resistance to 1000 microg of Cry1Ac per ml of diet. We selected two strains for increased resistance by exposing larvae from MOV97-R to diet with 1000 microg of Cry1Ac per ml of diet. In both selected strains, two to three rounds of selection increased survival at 1000 microg of CrylAc per ml of diet to at least 76%, indicating genetic variation in survival at this high concentration and yielding >4300-fold resistance relative to a susceptible strain. Variation in cadherin genotype did not explain variation in survival at 1000 microg of Cry1Ac per ml of diet, implying that one or more other loci affected survival at this concentration. This conclusion was confirmed with results showing that when exposure to Cry1Ac stopped, survival at 1000 microg of Cry1Ac per ml of diet dropped substantially, but survival at 10 microg Cry1Ac per ml of diet remained close to 100% and all survivors had two cadherin resistance alleles. Although survival at 1000 microg of Cry1Ac per ml of diet is not required for resistance to Bt cotton, understanding how genes other than cadherin confer increased survival at this high concentration may reveal novel mechanisms of resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号