首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   10篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   7篇
  2009年   1篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
排序方式: 共有76条查询结果,搜索用时 46 毫秒
71.
Cross‐sections of roots, stems, petioles and peduncles were investigated in 12 species of Viola distributed mainly in northern Iran: V. kitaibeliana, V. arvensis, V. occulta, V. tricolor (sect. Melanium), V. somchetica (sect. Plagiostigma), V. spathulata (sect. Spathulidium ined.), V. alba, V. odorata, V. sintenisii (sect. Viola subsect. Viola), V. caspia, V. reichenbachiana and V. rupestris (sect. Viola subsect. Rostratae). General anatomical features of Viola species are discussed. The following characters were found to be taxonomically informative: cross‐section shapes of the aerial stem, petiole and peduncle as well as the number of vascular bundles in the aerial stem. In taxa of sect. Melanium, stem cross‐sections are elliptic with two wings, but they are semi‐circular with two wings in taxa of sect. Viola subsect. Rostratae. Within the latter subsection, the number of vascular bundles in the stem can be used to delimit the species V. caspia, V. reichenbachiana and V. rupestris. Calcium oxalate crystals were observed in all vegetative organs of taxa belonging to sect. Viola. All examined taxa had a secondary structure with the exception of V. somchetica. Our results show that anatomical characters are useful for delimiting species, subsections, and sections within Viola.  相似文献   
72.
The aim of the present study was to investigate the comparative effects of pesticides Chlorfenapyr, Dimethoate and Acetamiprid on the health of Cirrhinus mrigala under long term exposure. Eighty C. mrigala were divided in four equal groups; one control and three treated groups. The blood was collected from both control and treated groups at intervals of 10th, 20th and 30th days for hemato-biochemistry and histopathological alterations. The result indicates significant difference (P < 0.05) in RBCs, Hb, PCV and MCHC whereas elevation in WBCs and Platelets counts were recorded. In 10th day sampling, MCV value of Dimethoate and Acetamiprid treatment had no difference in comparison with the control group, however it is significantly increased (P < 0.05) in rest of sampling. The MCH value of exposed fish showed significant increased (P < 0.05) after 20th and 30th days for Chlorfenapyr and after 30th days for Acetamiprid exposure while insignificantly increased for rest of sampling. It was also found that these pesticides significantly decrease (p < 0.05) the T3 and T4 levels while increase in the TSH, cortical, ALP, AST, ALT and LDH levels in the serum of the treated fishes in contrast to control group. Similarly, histopathological analysis of gills and liver showed significant alterations in all the treated groups. Toxicity trends of these pesticides was ranked as Chlorfenapyr > Acetamiprid > Dimethoate. It is concluded that indiscriminate use of such pesticides poses a noxious threat to non-target organisms, harm the ecosystems and jeopardizes human health.  相似文献   
73.
Durum wheat has the tendency of accumulating more cadmium (Cd), a biotoxic heavy metal, in seeds than other commonly grown cereals, thus posing a serious food safety/public health concern. This could have serious negative impact on the national pasta industry and the international export market of durum wheat. The phenotyping for selecting low Cd lines is expensive and time consuming. The use of markers could be a more sustainable approach for selecting lines with low Cd levels. Here, a RIL population developed from a cross between Grenora (high Cd) × Haurani (low Cd) and two association mapping panels consisting of advanced breeding lines from the North Dakota durum wheat breeding program were used to identify QTL and associated markers for Cd. A major QTL, with Haurani contributing low Cd uptake allele and explaining 54.3 % phenotypic variation, was detected on chromosome 5BL. Association mapping using 2010 collection validated the results of linkage mapping and identified major QTL on 5BL. The 2009 collection, showed the presence of a major QTL on chromosome 2B. The SNP marker associated with major QTL on 5BL was converted to user friendly KASPar assay. The major QTL and associated KASPar marker were further validated using another RIL population developed from a cross of Strongfield (low Cd) and Alkabo (high Cd). The development of suitable marker assay, associated with major Cd uptake QTL, would help the selection for low Cd accumulating lines, minimizing the costly phenotypic evaluation for this important trait.  相似文献   
74.
The species cytoplasm specific (scs) genes affect nuclear-cytoplasmic interactions in interspecific hybrids. A radiation hybrid (RH) mapping population of 188 individuals was employed to refine the location of the scs ae locus on Triticum aestivum chromosome 1D. “Wheat Zapper,” a comparative genomics tool, was used to predict synteny between wheat chromosome 1D, Oryza sativa, Brachypodium distachyon, and Sorghum bicolor. A total of 57 markers were developed based on synteny or literature and genotyped to produce a RH map spanning 205.2 cR. A test-cross methodology was devised for phenotyping of RH progenies, and through forward genetic, the scs ae locus was pinpointed to a 1.1 Mb-segment containing eight genes. Further, the high resolution provided by RH mapping, combined with chromosome-wise synteny analysis, located the ancestral point of fusion between the telomeric and centromeric repeats of two paleochromosomes that originated chromosome 1D. Also, it indicated that the centromere of this chromosome is likely the result of a neocentromerization event, rather than the conservation of an ancestral centromere as previously believed. Interestingly, location of scs locus in the vicinity of paleofusion is not associated with the expected disruption of synteny, but rather with a good degree of conservation across grass species. Indeed, these observations advocate the evolutionary importance of this locus as suggested by “Maan’s scs hypothesis.”  相似文献   
75.
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.  相似文献   
76.
Pathogen populations are expected to evolve virulence traits in response to resistance deployed in agricultural settings. However, few temporal datasets have been available to characterize this process at the population level. Here, we examined two temporally separated populations of Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease in oat (Avena sativa) sampled from 1990 to 2015. We show that a substantial increase in virulence occurred from 1990 to 2015 and this was associated with a genetic differentiation between populations detected by genome-wide sequencing. We found strong evidence for genetic recombination in these populations, showing the importance of the alternate host in generating genotypic variation through sexual reproduction. However, asexual expansion of some clonal lineages was also observed within years. Genome-wide association analysis identified seven Avr loci associated with virulence towards fifteen Pc resistance genes in oat and suggests that some groups of Pc genes recognize the same pathogen effectors. The temporal shift in virulence patterns in the Pca populations between 1990 and 2015 is associated with changes in allele frequency in these genomic regions. Nucleotide diversity patterns at a single Avr locus corresponding to Pc38, Pc39, Pc55, Pc63, Pc70, and Pc71 showed evidence of a selective sweep associated with the shift to virulence towards these resistance genes in all 2015 collected isolates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号