首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  国内免费   2篇
  2022年   3篇
  2021年   4篇
  2019年   7篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   17篇
  2012年   20篇
  2011年   17篇
  2010年   6篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   7篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
排序方式: 共有154条查询结果,搜索用时 109 毫秒
101.
Limitations to the in vivo study of human nervous system development make it necessary to design an in vitro model to evaluate the in vivo effects of surrounding tissues on neurogenesis and regional identity of the human neural plate. Rostral neural progenitors (NPs) were initially generated from adherent human embryonic stem cells (hESCs) in a defined condition and characterized. Then, to find the role of somites (S) and notochords (N) in rostro-caudal (RC) and dorso-ventral (DV) patterning of neuronal cells, NPs were co-cultured with microencapsulated chicken S or N in alginate beads. In this study, N induced more neurogenesis as evaluated by expression of TUJ1 and MAP2-positive cells. Additionally, N induced spinal cord ventral brachiothoracic identity as well as NPs proliferation. We observed a synergic effect on motoneuron induction when S and N were used together. Moreover, S induced hindbrain identity in differentiated neuronal cells from NPs. These results indicate that highly enriched NPs can be generated in an adherent and defined system from hESCs. Moreover, S and N tissues highly influenced neuronal differentiation in point of proliferation, neurogenesis, and RC and DV regional identity. These results indicate a very simple and efficient protocol to mimic in vivo events of human neural development in vitro which is important in the context of developmental neuroscience and cellular replacement therapies.  相似文献   
102.
Women carry the primary responsibility for family planning in most parts of the world, and should be afforded the power of decision-making and control over their fertility. This study seeks to gain insight into Iranian women's perception of the meaning of empowerment in family planning. Using a qualitative study, seven focus group discussions and five individual interviews were conducted with 35 married Iranian women of reproductive age. The data were analysed using a conventional content analysis approach, in which themes and categories were explored to reveal women's experiences of empowerment in family planning. The results demonstrated four main categories: control over fertility plan, participative family planning, maintaining health and access to optimal family planning services. They viewed knowledge of family planning and autonomy of decision-making in fertility issues as essential elements for control of their fertility plan. Participants felt more empowered when joint family planning decisions were made with their partners in an atmosphere of agreement. Therefore, family planning policymakers should plan services with new approaches that focus on women's health and empowerment.  相似文献   
103.
嵌合体大鼠是研究人类疾病的重要动物模型。用囊胚注射法研究了大鼠内细胞团(ICM)和胎儿神经干细胞(FNS)构建嵌合体的潜力。结果发现来自黑色(DA)大鼠第5天(D5)和第6天(D6)囊胚的ICM细胞注入D5 Sprague-Dawley(SD)大鼠囊胚后得到3只嵌合体大鼠;D5 SD大鼠ICM细胞注射入D5 DA囊胚后得到4只嵌合体大鼠;而体外培养的DA或SD大鼠ICM细胞注射后均未能获得嵌合体大鼠。本研究用大鼠胎儿神经干细胞(rFNS)和LacZ转染的rFNS构建嵌合体,未能获得嵌合体大鼠;但在LacZ转染的SD rFNS注射到DA大鼠囊胚后发育来的41只胎儿中,有2只胎儿其组织切片中发现少量LacZ阳性细胞。结果表明DA和SD大鼠ICM具有参与嵌合体发育的潜力,但ICM细胞经体外培养后构建嵌合体的潜力显著下降(P<0.05);大鼠胎儿神经干细胞构建嵌合体的潜力较低,可能仅具有参与早期胚胎发育的潜力。  相似文献   
104.
105.
The current phytochemical investigation on Buxus hyrcana Pojark. has resulted in the isolation of the triterpenoid alkaloids 1-10. The structures of five new alkaloids, hyrcanone (1), hyrcanol (2), hyrcatrienine (3), N(b)-dimethylcycloxobuxoviricine (4), and hyrcamine (5), were elucidated by means of modern spectroscopic techniques, while the known alkaloids, buxidin (6), buxandrine (7), buxabenzacinine (8), buxippine-K (9) and E-buxenone (10), were identified by comparing their spectral data with those reported earlier. Compounds 1 and 3-9 were found to be acetyl- and butyrylcholinesterase inhibitors. The IC50 values were estimated to be in the range of 83.0-468.0 microM against AChE and 1.12-350.0 microM against BChE. The structure-activity relationship studies suggested that the presence of dimethylamino moieties at C(3) and C(20) is the most important factor influencing the activity of these compounds against the cholinesterase enzymes. All compounds were also evaluated for cytotoxicity on a fibroblast cell line with incubation of 24 h. No cytotoxic effects were exerted by any compound.  相似文献   
106.
This project studied in detail the insecticidal activity of a fungal lectin from the sclerotes of Sclerotinia sclerotiorum, referred to as S. sclerotiorum agglutinin or SSA. Feeding assays with the pea aphid (Acyrthosiphon pisum) on an artificial diet containing different concentrations of SSA demonstrated a high mortality caused by this fungal lectin with a median insect toxicity value (LC50) of 66 (49–88) μg/ml. In an attempt to unravel the mode of action of SSA the binding and interaction of the lectin with insect tissues and cells were investigated. Histofluorescence studies on sections from aphids fed on an artificial liquid diet containing FITC-labeled SSA, indicated the insect midgut with its brush border zone as the primary target for SSA. In addition, exposure of insect midgut CF-203 cells to 25 μg/ml SSA resulted in a total loss of cell viability, the median cell toxicity value (EC50) being 4.0 (2.4–6.7) μg/ml. Interestingly, cell death was accompanied with DNA fragmentation, but the effect was caspase-3 independent. Analyses using fluorescence confocal microscopy demonstrated that FITC-labeled SSA was not internalized in the insect midgut cells, but bound to the cell surface. Prior incubation of the cells with saponin to achieve a higher cell membrane permeation resulted in an increased internalization of SSA in the insect midgut cells, but no increase in cell toxicity. Furthermore, since the toxicity of SSA for CF-203 cells was significantly reduced when SSA was incubated with GalNAc and asialomucin prior to treatment of the cells, the data of this project provide strong evidence that SSA binds with specific carbohydrate moieties on the cell membrane proteins to start a signaling transduction cascade leading to death of the midgut epithelial cells, which in turn results in insect mortality. The potential use of SSA in insect control is discussed.  相似文献   
107.
The allelopathic competence of tamarind root was evaluated using several weed and edible crop species under both laboratory and greenhouse conditions. Bio-assay guided studies using agar and soil medium revealed that the growth of both radicle and hypocotyl were strongly inhibited under both conditions. Accelerated root exudation observed with an increase in the age of tamarind seedlings caused a high magnitude of growth inhibition of the plant species tested by the plant-box method. Tamarind seedlings at 21-DAG (days after germination) exerted the strongest inhibitory effect (85.0–95.1%) on the growth of the plant species tested. Root dry weight of tamarind seedlings in the plant-box method experiment was highly correlated (R 2 values more than 0.92) with the percentage of growth inhibition. The growth of species grown in the soil under the tamarind tree was inhibited by 85.3–97.1% in the greenhouse. The percentage of growth inhibition declined by 18.4–22.0% (as compared to the natural soil condition) when autoclaved soil of the same trees was used for bio-assay of plant species by the soil-agar sandwich method. This indicates that ca. a 20% increase in response was associated with the allelopathic activity of tamarind root exuded into the natural soil and was due to the effects of soil microbes and soil texture. In terms of growth inhibition of the plant species tested, the root zone soil of the tamarind tree showed stronger inhibitory effects (80.1–94.2%) than the rhizosphere soil, as determined by the soil-agar sandwich method. In all cases, growth inhibition especially in the radicle was higher in the weed species than the edible crop species. Our observations clearly indicate that tamarind root exudate has allelochemical competence and this contributes to a weed free environment around the tamarind tree.  相似文献   
108.
A robust cross-link between Gln23 in phospholamban (PLN) and Lys328 in the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1a) is formed in the presence or absence of oxidant and is susceptible to both PLN phosphorylation and SERCA1a Ca2+ binding. This cross-link provides precisely the evidence needed to support our earlier proposal that collision of the PLN transmembrane helix at Asn27 with the cytosolic extension of M4 at Leu321 leads to unwinding of the helix. In a study of site-specific interactions among PLN, sarcolipin (SLN), and SERCA1a, we determined that mutations of some specific amino acids in PLN or SLN diminish either the super-inhibition imposed on SERCA1a function by the PLN-SLN binary complex or the physical interactions between PLN and SLN or both. These results have led to a revision of our earlier model for the PLN-SLN-SERCA1a complex.  相似文献   
109.
In recent years, different classes of proteins have been reported to promote toxic effects when ingested. Type-2 ribosome-inactivating proteins (RIPs) are a group of chimeric proteins built up of an A-chain with RNA N-glycosidase activity and a B-chain with lectin activity. These proteins are thought to play a role in plant protection. Sambucus nigra agglutinin I (SNA-I) is a type-2 RIP, isolated from the bark of elderberry (S. nigra L.). This study demonstrated the insecticidal potency of SNA-I on two Hemipteran insect species using two different methods. An artificial diet supplemented with different concentrations of the purified RIP reduced survival and fecundity of pea aphids Acyrthosiphon pisum. In addition, feeding of tobacco aphids, Myzus nicotianae, on leaves from transfected plants constitutively expressing SNA-I, resulted in a delayed development and reduced adult survival and also the fertility parameters of the surviving aphids were reduced, suggesting that a population of aphids would build up significantly slower on plants expressing SNA-I. Finally, a series of experiments with transgenic lines in which a mutant RIP was expressed, revealed that the carbohydrate-binding activity of SNA-I is necessary for its insecticidal activity. In a first set of mutants, the B-chain was mutated at one position (Asp231ΔGlu), and in the second set both carbohydrate-binding sites were mutated (Asn48ΔSer and Asp231ΔGlu). Mutation of one carbohydrate-binding site strongly reduced the insecticidal activity of SNA-I, whereas mutation of both lectin sites (almost) completely abolished the SNA-I effect on tobacco aphids.  相似文献   
110.
The synthesis and selective biological screening of 7-hydroxy-4-methyl-2H-chromen-2-one (2), 7-hydroxy-4,5-dimethyl-2H-chromen-2-one (15) and some of their derivatives were carried out. Compound 13 was found to be most potent cytotoxic agent with LD50 = 126.69 microg/ml. In antibacterial assay the compounds showed a broad spectrum of activities. Compound 11 exhibited a very high degree of plant growth inhibition at three levels of concentration. Compound 4 showed very promising antifungal activity against Candida albicans. Compounds 12 and 13 demonstrated excellent antioxidant activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号