首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5018篇
  免费   214篇
  国内免费   13篇
  2023年   51篇
  2022年   102篇
  2021年   297篇
  2020年   126篇
  2019年   173篇
  2018年   192篇
  2017年   149篇
  2016年   215篇
  2015年   257篇
  2014年   290篇
  2013年   417篇
  2012年   361篇
  2011年   366篇
  2010年   205篇
  2009年   176篇
  2008年   196篇
  2007年   191篇
  2006年   175篇
  2005年   150篇
  2004年   116篇
  2003年   86篇
  2002年   92篇
  2001年   57篇
  2000年   62篇
  1999年   47篇
  1998年   29篇
  1997年   14篇
  1996年   20篇
  1995年   17篇
  1993年   16篇
  1992年   31篇
  1991年   47篇
  1990年   41篇
  1989年   33篇
  1988年   28篇
  1987年   42篇
  1986年   30篇
  1985年   36篇
  1984年   28篇
  1983年   20篇
  1982年   17篇
  1981年   13篇
  1980年   13篇
  1979年   23篇
  1978年   25篇
  1977年   13篇
  1975年   14篇
  1974年   13篇
  1973年   20篇
  1968年   12篇
排序方式: 共有5245条查询结果,搜索用时 15 毫秒
991.
Increasing contamination and higher enrichment ratio of non-essential heavy metal cadmium (Cd) induce various toxic responses in plants when accumulated above the threshold level. These effects and growth responses are genotype and Cd level dependent. An experiment was conducted to analyze the effect of Cd toxicity in Brassica juncea [L] Czern and Coss by selecting its two varieties Varuna and RH-30. Cadmium (0, 25, 50 or 100 mg CdCl2 kg−1 of soil) fed to soil decreased the values of growth characteristics, activity of nitrate reductase and leaf water potential, whereas activities of antioxidant enzymes and proline content increased with the increasing concentration of Cd, observed at 30 and 60 day stages of growth, in both the varieties. Moreover, Cd uptake by the roots was higher in RH-30 than Varuna. Also the activity of antioxidant enzymes and proline accumulation were higher in Varuna with increasing soil level of Cd. Out of the two varieties, Varuna was more tolerant than RH-30 to Cd stress.  相似文献   
992.
The present study was designed to examine the functional relevance of two heterozygous mutations (H391Y and K422R), observed earlier by us in the Bloom syndrome condition. Cells stably expressing exogenous wild-type or mutant PKM2 (K422R or H391Y) or co-expressing both wild type and mutant (PKM2-K422R or PKM2-H391Y) were assessed for cancer metabolism and tumorigenic potential. Interestingly, cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism as compared with cells expressing either wild-type or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation, and tumor growth. These observations signify the dominant negative nature of mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; this study demonstrates for the first time the possible predisposition of Bloom syndrome patients with impaired PKM2 activity to cancer and the importance of studying genetic variations in PKM2 in the future to understand their relevance in cancer in general.  相似文献   
993.
The p38 pathway is an evolutionarily conserved signaling pathway that responds to a variety of stresses. However, the underlying mechanisms are largely unknown. In the present study, we demonstrate that p38b is a major p38 MAPK involved in the regulation of oxidative stress tolerance in addition to p38a and p38c in Drosophila. We further show the importance of MK2 as a p38-activated downstream kinase in resistance to oxidative stresses. Furthermore, we identified the iron-sulfur cluster scaffold protein IscU as a new substrate of MK2 both in Drosophila cells and in mammalian cells. These results imply a new mechanistic connection between the p38 pathway and mitochondria iron-sulfur clusters.  相似文献   
994.
This study examined functional properties and biocompatibility of glutaraldehyde-fixed bovine articular cartilage over several weeks of incubation at body temperature to investigate its potential use as a resurfacing material in joint arthroplasty. In the first experiment, treated cartilage disks were fixed using 0.02, 0.20 and 0.60% glutaraldehyde for 24 h then incubated, along with an untreated control group, in saline for up to 28 d at 37 °C. Both the equilibrium compressive and tensile moduli increased nearly twofold in treated samples compared to day 0 control, and remained at that level from day 1 to 28; the equilibrium friction coefficient against glass rose nearly twofold immediately after fixation (day 1) but returned to control values after day 7. Live explants co-cultured with fixed explants showed no quantitative difference in cell viability over 28 d. In general, no significant differences were observed between 0.20 and 0.60% groups, so 0.20% was deemed sufficient for complete fixation. In the second experiment, cartilage-on-cartilage frictional measurements were performed under a migrating contact configuration. In the treated group, one explant was fixed using 0.20% glutaraldehyde while the apposing explant was left untreated; in the control group both explants were left untreated. From day 1 to 28, the treated group exhibited either no significant difference or slightly lower friction coefficient than the untreated group. These results suggest that a properly titrated glutaraldehyde treatment can reproduce the desired functional properties of native articular cartilage and maintain these properties for at least 28 d at body temperature.  相似文献   
995.
A new species, Goffartia phalacra n. sp. is described and illustrated. The body is thin and slender with L = 511 to 646 μm; a = 37.1 to 47.4; b = 4.8 to 6; c = 2.6 to 4.8; c′ = 13.6 to 32.8; V = 40% to 49% in females. Males are smaller but similar to females and the posterior region is strongly curved. The species is characterized by a tubular stoma, a smooth round lip region, anterior pharynx much smaller than posterior pharynx, two pairs of unicellular glands associated with the vagina, and males with a broad keel-shaped gubernaculum. G. phalacra n. sp. can be differentiated from all other species of the genus by its lip region and the structure of the gubernaculum. This is the first instance of a species of Goffartia occurring in a terrestrial habitat and the first report of a species from India.  相似文献   
996.
The effects of adipose derived stromal cells (ASCs) were evaluated on tracheal responsiveness and biochemical parameters in guinea pigs model of chronic obstructive pulmonary disease (COPD). Thirty six guinea pigs were divided into 6 groups including: Control, COPD, COPD+intratracheal delivery of PBS (COPD+ITPBS), COPD+intravenous delivery of PBS (COPD+IVPBS), COPD+intratracheal delivery of ASCs (COPD+ITASC) and COPD+intravenous injection of ASCs (COPD+IVASC). COPD was induced by exposing animals to cigarette smoke for 3 months. Cell therapy was then performed and after 14 days, tracheal responsiveness, concentration of interleukin-8 (IL-8) in serum and broncho-alveolar lavage fluid (BALF), as well as total and differential white blood cells (WBC) counts were evaluated. Tracheal responsiveness, total WBC counts, neutrophil and eosinophil percentage in BALF as well as concentration of IL-8 in serum and BALF significantly increased but lymphocyte percentage decreased in COPD compared to the control group (P<0.05 to p<0.001). Cell therapy was able to restore the tracheal hyper-responsiveness and the increased IL-8 concentration in serum and BALF of COPD-ITASC but not COPD-IVASC animals (P<0.05 for all cases). Total WBC in BALF also showed a significant decrease in both treated groups and the percentages of eosinophils, neutrophils and lymphocytes in BALF were reversed in COPD-ITASC compared to COPD-ITPBS animals (P<0.05 to P<0.001). Therefore, intratracheal cell therapy with ASC can decrease tracheal hyperresponsiveness and lung inflammation in cigarette smoke induced-COPD which may be helpful in attenuation of the severity of disease in patients suffering from COPD.  相似文献   
997.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   
998.
Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.  相似文献   
999.
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.  相似文献   
1000.
Rice bran oil is known as wonder oil and it is the most important vegetable oil in Asia. Rice bran oil is extracted from bran that is the outer hard layer of rice. It is an emerging category in edible oil with a lot of nutritional properties and health benefits. Rice bran oil is heart-friendly, boosts up immunity, and prevents from other diseases occurring commonly in Pakistan. The current study aimed to stabilize rice bran oil through different probiotic isolates and to assess the nutritional content of rice bran oil after stabilization. The study was aimed to inactivate naturally occurring lipases that can hydrolyze oil into glycerol and free fatty acid which is a serious problem that gives it a rancid taste and smell. Antilipase activity was used to inactivate naturally occurring lipases that are a huge threat to the stabilization process. The fermentation process utilizes antilipase activity without affecting the nutritional value of oil. Lactobacillus strains were used for the stabilization of rice bran oil. Rice bran oil was extracted in the Soxhlet apparatus. The probiotic lab isolates Lactobacillus delbrueckii S2, Lactobacillus casei S5 and Lactobacillus plantarum S13 were applied to it to increase its shelf life and prevent oxidative rancidity. The extraction temperature of rice bran oil was maintained above 40 °C to inhibit lipase activity. Rice bran oil samples were stored at refrigeration temperature to arrest lipase activity. Probiotics maintained acidic pH to keep oil stabilization. Qualitative analysis was done to confirm rice bran oil stabilization. Determination of Free Fatty Acid (FFA) and saponification value confirmed that oxidative rancidity of rice bran oil was controlled by probiotics. FFA count was less than 10% and Saponification Value (SV) was 180. GC analysis was performed to analyze the FFA profile. Gas Chromatography results have shown 3 fatty acids. Statistical analysis has shown non-significant effect on different incubation temperatures of Lactobacillus isolates. Among the biological methods of stabilization, the use of probiotics is a novel concept and recommended for commercial application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号