首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   33篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   13篇
  2020年   14篇
  2019年   26篇
  2018年   14篇
  2017年   11篇
  2016年   10篇
  2015年   19篇
  2014年   17篇
  2013年   20篇
  2012年   23篇
  2011年   23篇
  2010年   14篇
  2009年   14篇
  2008年   13篇
  2007年   14篇
  2006年   18篇
  2005年   21篇
  2004年   13篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   4篇
  1986年   3篇
  1984年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
91.
Cryo-electron tomography of vitreous cryo-sections is the most suitable method for exploring the 3D organization of biological samples that are too large to be imaged in an intact state. Producing good quality vitreous cryo-sections, however, is challenging. Here, we focused on the major obstacles to success: contamination in and around the microtome, and attachment of the ribbon of sections to an electron microscopic grid support film. The conventional method for attaching sections to the grid has involved mechanical force generated by a crude stamping or pressing device, but this disrupts the integrity of vitreous cryo-sections. Furthermore, attachment is poor, and parts of the ribbon of sections are often far from the support film. This results in specimen instability during image acquisition and subsequent difficulty with aligning projection images.Here, we have implemented a protective glove box surrounding the cryo-ultramicrotome that reduces the humidity around and within the microtome during sectioning. We also introduce a novel way to attach vitreous cryo-sections to an EM grid support film using electrostatic charging. The ribbon of vitreous cryo-sections remains in place during transfer and storage and is devoid of stamping related artefacts. We illustrate these improvements by exploring the structure of putative cellular 80S ribosomes within 50 nm, vitreous cryo-sections of Saccharomyces cerevisiae.  相似文献   
92.
93.
Sensitive and selective determination of valproic acid in plasma by high-performance liquid chromatography (HPLC) is usually achieved with pre-column derivatization. In the present work, the derivatization is omitted due to using a simple but highly selective plasma extraction procedure and an optimized chromatographic condition. Valproic acid and the internal standard octanoic acid were extracted from plasma samples with n-hexane under acidic condition followed by back-extraction into diluted triethylamine. Chromatography was performed on a CN column (250 x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-40 mM aqueous sodium dihydrogen phosphate (30:70, v/v), pH 3.5. Detection was made at 210 nm and analyses were run at a flow-rate of 1 ml/min. The method was specific and sensitive with a quantification limit of 1.25 microg/ml and a detection limit of 0.1 microg/ml in plasma. The mean absolute recovery for valproic acid using the present plasma extraction procedure was 75.8%. The intra- and inter-day coefficient of variation and percent error values of the assay method were all in acceptable range. Calibration curves were linear (r>0.999) from 1.25 to 320 microg/ml in plasma.  相似文献   
94.
Nostoc muscorum PTCC 1636 was examined for its ability to convert androst-4-en-3,17-dione (AD) and androst-1,4-dien-3,17-dione (ADD) to their 17-hydroxy related derivatives in BG-11 medium. Bioconversion procedures were carried out at 25 °C without shaking. The metabolites obtained were purified using chromatographic methods and characterized as testosterone and 1-dehydrotestosterone on the basis of their spectroscopic features. In both cases, the bioreaction characteristics observed were 17-carbonyl reduction.  相似文献   
95.
Protein pattern changes in tomato under in vitro salt stress   总被引:2,自引:0,他引:2  
The investigation of salt-induced changes in the proteome would highlight important genes because of a high resolution of protein separation by two-dimensional gel electrophoresis (2-DE) and protein identification by mass spectrometry and database search. Tomato (Lycopersicon esculentum Mill.) is a model plant for studying the mechanisms of plant salt tolerance. Seeds of tomato cv. Shirazy were germinated on water-agar medium. After germination, seedlings were transferred to Murashige and Skoog nutrient medium supplemented with 0, 40, 80, 120, and 160 mM NaCl. After 24 days, leaf and root samples were collected for protein extraction and shoot dry weight measurement. Alterations induced in leaf and root proteins under salt stress treatments were studied by one-dimensional SDS-PAGE. Leaf proteins were also analyzed by 2-DE. With increasing salt concentration in the medium, shoot dry weight decreased. SDS-PAGE showed induction of at least five proteins with mol wts of 30, 62, and 75 kD in roots and 38 and 46 kD in leaves. On the 2-DE gel, more than 400 protein spots were reproducibly detected. At least 18 spots showed significant changes under salt stress. Three of them corresponded to new proteins, while six proteins were up-regulated and five proteins were down-regulated by salt stress. In addition, salinity inhibited the synthesis of four leaf proteins. Ten spots were analyzed by matrix-assistant laser desorption/ionization-time of flight (MALDI-TOF), which led to the identification of some proteins, which could play a physiological role under salt stress. The expression of new proteins(enoyl-CoA hydratase, EGF receptor-like protein, salt tolerance protein, phosphoglycerate mutase-like protein, and M2D3.3 protein) under salt stress indicates that tomato leaf cells respond to salt stress by changes in different physiological processes. All identified proteins are somehow related to various salt stress responses, such as cell proliferation. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 526–533. The text was submitted by the authors in English.  相似文献   
96.
97.
Biotransformation of hydrocortisone by a natural isolate of Nostoc muscorum   总被引:1,自引:0,他引:1  
Hydrocortisone was converted in the culture of an isolated strain of the cyanobacterium Nostoc muscorum PTCC 1636 into some androstane and pregnane derivatives. The microorganism was, isolated during a screening program from soil samples collected from paddy fields of north of Iran. The bioproducts obtained were purified using chromatographic methods and identified as 11beta-hydroxytestosterone, 11beta-hydroxyandrost-4-en-3,17-dione and 11beta,17alpha,20beta,21-tetrahydroxypregn-4-en-3-one on the basis of their spectroscopic features.  相似文献   
98.
Journal of Plant Growth Regulation - The response of Vigna radiata L. (mung bean) to tropospheric ozone (O3) phytotoxicity using Ethylenediurea (EDU) and magnesium nitrate (Mg(NO3)2,...  相似文献   
99.
100.
Topiramate has no ultraviolet, visible or fluorescence absorption. Analysis of the drug in human serum has been reported by high performance liquid chromatography (HPLC) with either mass detector or fluorescence detection after precolumn derivatization using 9-fluorenylmethyl chloroformate as fluorescent labeling agent. This study was aimed to validate derivatization and analysis of topiramate in human serum with HPLC using UV detection. The drug was extracted from human serum by liquid-liquid extraction and subjected to derivatization with 9-fluorenylmethyl chloroformate. Analysis was performed on a phenyl column using of spectrophotometer detection operated at wavelength of 264 nm. A mixture of phosphate buffer (0.05M) containing triethylamine (1 ml/l, v/v; pH 2.3) and methanol (28:72, v/v) at a flow rate of 2.5 ml/min was used as mobile phase. No interference was found with endogenous substances. Validity of the method was studied and the method was precise and accurate with a linearity range from 40 ng/ml to 40 microg/ml. The limit of quantification was 40 ng/ml of serum. The correlation coefficient between HPLC methods using fluorescence and UV detections was studied and found to be 0.992.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号