首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   21篇
  国内免费   3篇
  2023年   7篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   17篇
  2018年   12篇
  2017年   14篇
  2016年   13篇
  2015年   21篇
  2014年   22篇
  2013年   18篇
  2012年   22篇
  2011年   24篇
  2010年   14篇
  2009年   20篇
  2008年   19篇
  2007年   13篇
  2006年   16篇
  2005年   15篇
  2004年   15篇
  2003年   13篇
  2002年   6篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
251.
Cold stress is an important factor affecting chickpea (Cicer arietinum L.) plants in winter and early spring. We evaluated the effects of cold stress by measuring lipid peroxidation, membrane permeability, and some enzyme activities involved in the ROS-scavenging system under acclimation and non-acclimation conditions in black chickpea Kaka, a popular genotype planted, and accession 4322, as a landrace genotype. Under non-acclimation conditions, the genotype 4322 prevented the H2O2 accumulation more efficiently, which led to a decrease in lipid peroxidation and membrane permeability compared to Kaka. Studying the activities of antioxidant enzymes showed that catalase was more effective enzyme in cell protection against H2O2 in 4322 plants. Such response in acclimated plants was more pronounced than in control and nonacclimated plants. In this study, the increase in guaiacol peroxidase and ascorbate peroxidase activities did not preserve cell membranes from oxidative damage in Kaka plants. It was observed that short-term acclimation can induce greater cold tolerance upon the increase of oxidative stress in chickpea plants. This was due to low levels of MDA and electrolyte leakage index, indicating the lower lipid peroxidation and higher membrane stability under the cold stress compared to non-acclimated plants.  相似文献   
252.
253.
The visual system in humans is considered the gateway to the world and plays a principal role in the plethora of sensory, perceptual and cognitive processes. It is therefore not surprising that quality of vision is tied to quality of life . Despite widespread clinical and basic research surrounding the causes of visual disorders, many forms of visual impairments, such as retinitis pigmentosa and macular degeneration, lack effective treatments. Non-human primates have the closest general features of eye development to that of humans. Not only do they have a similar vascular anatomy, but amongst other mammals, primates have the unique characteristic of having a region in the temporal retina specialized for high visual acuity, the fovea1. Here we describe a general technique for dissecting the primate retina to provide tissue for retinal histology, immunohistochemistry, laser capture microdissection, as well as light and electron microscopy. With the extended use of the non-human primate as a translational model, our hope is that improved understanding of the retina will provide insights into effective approaches towards attenuating or reversing the negative impact of visual disorders on the quality of life of affected individuals.Open in a separate windowClick here to view.(46M, flv)  相似文献   
254.
Adult bone marrow is a rich reservoir of hematopoietic and vascular stem and progenitor cells. Mobilization and recruitment of these cells are essential for tissue revascularization. Physiological stress, secondary to tissue injury or tumor growth, results in the release of angiogenic factors, including vascular endothelial growth factor (VEGF), which promotes mobilization of stem cells to the circulation, contributing to the formation of functional vasculature. VEGF interacts with its receptors, VEGFR2 and VEGFR1, expressed on endothelial and hematopoietic stem cells, and thereby promotes recruitment of these cells to neo-angiogenic sites, accelerating the revascularization process. The mobilization of stem cells from marrow is a dynamic process, regulated by shear stress imparted by blood flow, and the activation of metalloproteinases that induce the release of 'Kit ligand', facilitating egress from the marrow to the circulation. Identification of the molecular pathways that support the proliferation and differentiation of vascular stem and progenitor cells will open up new avenues for the design of clinical trials to accelerate tissue vascularization and organogenesis.  相似文献   
255.
Because we recently identified the G(alpha)olf subunit in rat pancreatic beta-cells, we investigated the downstream effectors and the biological functions of this G protein in HEK-293T cells and the insulin-secreting mouse betaTC-3 cell line. With the use of transient transfection of HEK-293T cells with constitutively activated G(alpha)olf (G(alpha)olfQ214L, i.e., AG(alpha)olf), together with expression vectors encoding the adenylyl cyclase (AC) isoforms (AC-I to -VIII and soluble AC), compared with cotransfections using AG(alphas) (G(alphas)R201C), we observed that AG(alpha)olf preferentially activates AC-I and -VIII, which are also expressed in beta-cells. Stable overexpression of wild-type or AG(alpha)olf in betaTC-3 cells resulted in partial attenuation of insulin secretion and biosynthesis, suggesting that chronic activation of the G(alpha)olf-signaling pathway is associated with beta-cell desensitization. In agreement, transfected betaTC-3 cells present a decreased insulin content with respect to parental cells, whereas the proinsulin convertases PC-1 and PC-2 were unaffected. Furthermore, betaTC-3-AG(alpha)olf cells are resistant to serum starvation-induced apoptosis. Our findings suggest that G(alpha)olf is involved in insulin status, cell survival, and regeneration of the insulin-secreting beta-cells during development and diabetes.  相似文献   
256.
Epidemiology of Dermatophytoses in an Area South of Tehran,Iran   总被引:6,自引:3,他引:3  
Dermatophyte infections have been considered to be a major public health problem in many parts of the world. The aim of this study was to identify the etiological and epidemiological factors of dermatophyte infections in an area south of Tehran. A total of 1254 patients suspected to have dermatophytic lesions were examined over a period of three years (1999-2001). Material collected from skin, hair, and nails was submitted to direct microscopic examination using KOH, cultured in Sabouraud dextrose agar and microscopically examined for colony morphology, in order to the identify the 169 dermatophytes isolated. The prevalence of dermatophytoses was 13.5% (95% CI: 11.7-15.5%). Their incidence was 10.6 per 100,000 person-years (95% CI: 8.5-13.2). Epiderophyton floccosum was the most frequent dermatophyte isolated (31.4%) followed by Trichophyton rubrum (18.3%), T. mentegrophytes (17.2%), T. violaceum (16.6%), Microsporum canis (6.5%), T. verrucosum (4.7%) and M. gypseum (4.1%). Epidermophytes floccosum was found to be the most common isolated dermatophyte in age groups 20-29 (30.2%). Tinea corporis (31.4%) was the most common type of infection, followed by tinea cruris (20.7%), tinea manuum (15.4%), tinea capitis (12.4%), tinea pedis (10.6%), tinea faciei (7.1%), and tinea unguium (2.4%). The frequency rate of all of the types of tinea was higher in males than in females. The anthrophilic species E. floccosum was the most common dermatophyte as a causative agent of tinea. The most prevalent fungal infection was tinea corporis caused by E. floccosum.  相似文献   
257.
The aim of this study was to examine whether malathion, a commonly used organophosphate (OP), might induce oxidative stress and cholinesterase (ChE) depression in saliva and plasma in rats following subchronic exposure mimicking human exposure. Malathion was administered orally at doses of 100, 500 and 1500 ppm for 4 weeks. Oxidative stress was determined by measuring the malondialdehyde concentration, the end product of lipid peroxidation, and assessing total antioxidant power. Four weeks oral administration of malathion at doses of 100 ppm, 500 ppm and 1500 ppm depressed plasma ChE activity to 45% (P<0.01), 48% (P<0.01) and 41% (P<0.01) of control, respectively. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm depressed saliva ChE activity to 73% (P<0.01), 75% (P<0.01) and 78% (P<0.01) of control, respectively. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm increased plasma antioxidant power by 33% (P<0.01), 59% (P<0.01) and 118% (P<0.01) of control, respectively. Malathion did not change saliva antioxidant power. Malathion at doses of 100 ppm, 500 ppm and 1500 ppm increased plasma thiobarbituric acid reactive substances (TBARS) by 61% (P<0.01), 69% (P<0.01) and 63% (P<0.01) of control, respectively. Malathion at doses of 500 ppm and 1500 ppm increased saliva TBARS by 19% (P<0.01) and 22% (P<0.01) of control, respectively. Malathion (100 ppm) did not change saliva TBARS level. We concluded that in OP subchronic exposure, depression of ChE is accompanied by induction of oxidative stress that might be beneficial in monitoring OP toxicity.  相似文献   
258.
The molecular pathways involved in the differentiation of hematopoietic progenitors are unknown. Here we report that chemokine-mediated interactions of megakaryocyte progenitors with sinusoidal bone marrow endothelial cells (BMECs) promote thrombopoietin (TPO)-independent platelet production. Megakaryocyte-active cytokines, including interleukin-6 (IL-6) and IL-11, did not induce platelet production in thrombocytopenic, TPO-deficient (Thpo(-/-)) or TPO receptor-deficient (Mpl(-/-)) mice. In contrast, megakaryocyte-active chemokines, including stromal-derived factor-1 (SDF-1) and fibroblast growth factor-4 (FGF-4), restored thrombopoiesis in Thpo(-/-) and Mpl(-/-) mice. FGF-4 and SDF-1 enhanced vascular cell adhesion molecule-1 (VCAM-1)- and very late antigen-4 (VLA-4)-mediated localization of CXCR4(+) megakaryocyte progenitors to the vascular niche, promoting survival, maturation and platelet release. Disruption of the vascular niche or interference with megakaryocyte motility inhibited thrombopoiesis under physiological conditions and after myelosuppression. SDF-1 and FGF-4 diminished thrombocytopenia after myelosuppression. These data suggest that TPO supports progenitor cell expansion, whereas chemokine-mediated interaction of progenitors with the bone marrow vascular niche allows the progenitors to relocate to a microenvironment that is permissive and instructive for megakaryocyte maturation and thrombopoiesis. Progenitor-active chemokines offer a new strategy to restore hematopoiesis in a clinical setting.  相似文献   
259.
The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAbs.  相似文献   
260.
BACKGROUND: It is believed that a face-specific system exists within the primate ventral visual pathway that is separate from a domain-general nonface object coding system. In addition, it is believed that hemispheric asymmetry, which was long held to be a distinct feature of the human brain, can be found in the brains of other primates as well. We show here for the first time by way of a functional imaging technique that face- and object-selective neurons form spatially distinct clusters at the cellular level in monkey inferotemporal cortex. We have used a novel functional mapping technique that simultaneously generates two separate activity profiles by exploiting the differential time course of zif268 mRNA and protein expression. RESULTS: We show that neurons activated by face stimulation can be visualized at cellular resolution and distinguished from those activated by nonface complex objects. Our dual-activity maps of face and object selectivity show that face-selective patches of various sizes (mean, 22.30 mm2; std, 32.76 mm2) exist throughout the IT cortex in the context of a large expanse of cortical territory that is responsive to visual objects. CONCLUSIONS: These results add to recent findings that face-selective patches of various sizes exist throughout area IT and provide the first direct anatomical evidence at cellular resolution for a hemispheric asymmetry in favor of the right hemisphere. Together, our results support the notion that human and monkey brains share a similarity in both anatomical organization and distribution of function with respect to high-level visual processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号