首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   56篇
  国内免费   1篇
  2024年   4篇
  2023年   9篇
  2022年   31篇
  2021年   40篇
  2020年   25篇
  2019年   24篇
  2018年   54篇
  2017年   33篇
  2016年   41篇
  2015年   50篇
  2014年   47篇
  2013年   43篇
  2012年   51篇
  2011年   86篇
  2010年   31篇
  2009年   32篇
  2008年   38篇
  2007年   21篇
  2006年   25篇
  2005年   24篇
  2004年   29篇
  2003年   24篇
  2002年   16篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1971年   2篇
排序方式: 共有854条查询结果,搜索用时 15 毫秒
751.
We describe for the first time functional clusters of genes that are modulated during the differentiation of osteoclasts. Pathway analysis was applied to gene array data generated from affymetrix chips hybridized to RNA isolated from RAW264.7 cells exposed to RANK-ligand (RANK-L) for 5 days. This analysis revealed major functional gene clusters that were either up- or down-regulated during osteoclastogenesis. Some of the genes within the clusters have known functions, while others do not. We discuss herein the relevance of these functional gene clusters and their modulation to biological processes underlying the formation, function, and fate of osteoclasts.  相似文献   
752.
Biological invasion is a widespread, but poorly understood phenomenon. Elton's hypothesis, supported by theory, experiment, and anecdotal evidence, suggests that an important determinant of invasion success is resident biodiversity, arguing that high diversity increases the competitive environment of communities and makes them more difficult to invade. Observational studies of plant invasions, however, find little support for this hypothesis and argue strongly against it. Lack of control of extrinsic factors (e.g., disturbance, climate, or soil fertility) that covary with biodiversity and invasion in observational studies makes it difficult to determine if their findings truly refute Elton's hypothesis. We examined performance of Crepis tectorum (an invasive, annual composite weed) in experimental prairie grassland plots and greenhouse plant assemblages in which resident species richness was directly manipulated. Under these conditions, unlike observational studies, no covarying extrinsic factors could interfere with interpreting results. We found a strong inverse association between resident diversity and invader performance as predicted by Elton's hypothesis. Higher resident diversity increased crowding, decreased available light, and decreased available nutrients all of which increased the competitive environment of diverse plant assemblages and reduced C. tectorum success. Examination of individual resident species impacts on C. tectorum performance demonstrated that this diversity effect was not due to the sampling effect. These results suggest that both Elton's hypothesis and its competitive mechanism may operate in nature, but covarying extrinsic factors may obscure the negative impact of diversity on invader success.  相似文献   
753.
This work describes the development of polymersome-encapsulated hemoglobin (PEH) self-assembled from biodegradable and biocompatible amphiphilic diblock copolymers composed of poly(ethylene oxide) (PEO), poly(caprolactone) (PCL), and poly(lactide) (PLA). In the amphiphilic diblock, PEO functions as the hydrophilic block, while either PCL or PLA can function as the hydrophobic block. PEO, PCL, and PLA are biocompatible polymers, while the last two polymers are biodegradable. PEH dispersions were prepared by extrusion through 100 nm pore radii polycarbonate membranes. In this work, the encapsulation efficiency of human and bovine hemoglobin (hHb and bHb) in polymersomes was adjusted by varying the initial concentration of Hb. This approach yielded Hb loading capacities that were comparable to values in the literature that supported the successful resuscitation of hamsters experiencing hemorrhagic shock. Moreover, the Hb loading capacities of PEHs in this study can also be tailored simply by controlling the diblock copolymer concentration. In this study, typical Hb/diblock copolymer weight ratios ranged 1.2-1.5, with initial Hb concentrations less than 100 mg/mL. The size distribution, Hb encapsulation efficiency, oxygen affinity (P 50), cooperativity coefficient (n), and methemoglobin (metHb) level of these novel PEH dispersions were consistent with values required for efficient oxygen delivery in the systemic circulation. Taken together, our results demonstrate the development of novel PEH dispersions that are both biocompatible and biodegradable. These novel dispersions show very good promise as therapeutic oxygen carriers.  相似文献   
754.
Banana bunchy top disease is a major constraint to banana production in most regions where this crop is grown. The disease is caused by Banana bunchy top virus (BBTV), a multicomponent, single-stranded DNA virus of the family Nanoviridae. We have designed primers to a conserved region of the master replication-associated protein that are useful for the polymerase chain reaction (PCR)-mediated detection of BBTV. In addition, primers to banana genomic sequence are used as an internal control, overcoming the uncertainty (owing to false-negatives) inherent in PCR diagnostics. Together these primer sets are a valuable tool in the effort to control BBTV, particularly in screening micropropagated banana plantlets for the absence of virus before release to farmers.  相似文献   
755.
MOTIVATION: With the potential availability of nanopore devices that can sense the bases of translocating single-stranded DNA (ssDNA), it is likely that 'reads' of length approximately 10(5) will be available in large numbers and at high speed. We address the problem of complete DNA sequencing using such reads.We assume that approximately 10(2) copies of a DNA sequence are split into single strands that break into randomly sized pieces as they translocate the nanopore in arbitrary orientations. The nanopore senses and reports each individual base that passes through, but all information about orientation and complementarity of the ssDNA subsequences is lost. Random errors (both biological and transduction) in the reads create further complications. RESULTS: We have developed an algorithm that addresses these issues. It can be considered an extreme variation of the well-known Eulerian path approach. It searches over a space of de Bruijn graphs until it finds one in which (a) the impact of errors is eliminated and (b) both possible orientations of the two ssDNA sequences can be identified separately and unambiguously.Our algorithm is able to correctly reconstruct real DNA sequences of the order of 10(6) bases (e.g. the bacterium Mycoplasma pneumoniae) from simulated erroneous reads on a modest workstation in about 1 h. We describe, and give measured timings of, a parallel implementation of this algorithm on the Cray Multithreaded Architecture (MTA-2) supercomputer, whose architecture is ideally suited to this 'unstructured' problem. Our parallel implementation is crucial to the problem of rapidly sequencing long DNA sequences and also to the situation where multiple nanopores are used to obtain a high-bandwidth stream of reads.  相似文献   
756.
757.
The complement system presents a powerful defense against infection and is tightly regulated to prevent damage to self by functionally equivalent soluble and membrane regulators. We describe complement C2 receptor inhibitor trispanning (CRIT), a novel human complement regulatory receptor, expressed on hemopoietic cells and a wide range of tissues throughout the body. CRIT is present in human parasites through horizontal transmission. Serum complement component C2 binds to the N-terminal extracellular domain 1 of CRIT, which, in peptide form, blocks C3 convertase formation and complement-mediated inflammation. Unlike C1 inhibitor, which inhibits the cleavage of C4 and C2, CRIT only blocks C2 cleavage but, in so doing, shares with C1 inhibitor the same functional effect, of preventing classical pathway C3 convertase formation. Ab blockage of cellular CRIT reduces inhibition of cytolysis, indicating that CRIT is a novel complement regulator protecting autologous cells.  相似文献   
758.
In bacteria, the chemotactic signal is greatly amplified between the chemotaxis receptors and the flagellar motor. In Escherichia coli, part of this amplification occurs at the flagellar switch. However, it is not known whether the amplification results from cooperativity of CheY binding to the switch or from a post-binding step. To address this question, we purified the intact switch complex (constituting the switch proteins FliG, FliM, and FliN and the scaffolding protein FliF) in quantities sufficient for biochemical work and used it to investigate whether the binding of CheY to the switch complex is cooperative. As a negative control, we used complexes of switchless basal bodies, formed from the proteins FliF and FliG and similarly isolated. Using double-labeling centrifugation assays for binding, we found that CheY binds to the isolated, intact switch complex in a phosphorylation-dependent manner. We observed no significant phosphorylation-dependent binding to the negative control of the switchless basal body. The dissociation constant for the binding between the switch complex and phosphorylated CheY (CheY approximately P) was 4.0 +/- 1.1 microm, well in line with the published range of CheY approximately P concentrations to which the flagellar motor is responsive. Furthermore, the binding was not cooperative (Hill coefficient approximately 1). This lack of CheY approximately P-switch complex binding cooperativity, taken together with earlier in vivo studies suggesting that the dependence of the rotational state of the motor on the fraction of occupied sites at the switch is sigmoidal and very steep (Bren, A., and Eisenbach, M. (2001) J. Mol. Biol. 312, 699-709), indicates that the chemotactic signal is amplified within the switch, subsequent to the CheY approximately P binding.  相似文献   
759.
760.
Resveratrol is a dietary phytochemical that has been shown to inhibit proliferation of a number of cell lines, and it behaves as a chemopreventive agent in assays that measure the three stages of carcinogenesis. We tested for its chemopreventive potential against gastric cancer by determining its interaction with signaling mechanisms that contribute to the proliferation of transformed cells. Low levels of exogenous reactive oxygen (H(2)O(2)) stimulated [(3)H]thymidine uptake in human gastric adenocarcinoma SNU-1 cells, whereas resveratrol suppressed both synthesis of DNA and generation of endogenous O(2)(-) but stimulated nitric oxide (NO) synthase (NOS) activity. To address the role of NO in the antioxidant action of resveratrol, we measured the effect of sodium nitroprusside (SNP), an NO donor, on O(2)(-) generation and on [(3)H]thymidine incorporation. SNP inhibited DNA synthesis and suppressed ionomycin-stimulated O(2)(-) generation in a concentration-dependent manner. Our results revealed that the antioxidant action of resveratrol toward gastric adenocarcinoma SNU-1 cells may reside in its ability to stimulate NOS to produce low levels of NO, which, in turn, exert antioxidant action. Resveratrol-induced inhibition of SNU-1 proliferation may be partly dependent on NO formation, and we hypothesize that resveratrol exerts its antiproliferative action by interfering with the action of endogenously produced reactive oxygen. These data are supportive of the action of NO against reactive oxygen and suggest that a resveratrol-rich diet may be chemopreventive against gastric cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号