首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1746篇
  免费   101篇
  国内免费   4篇
  1851篇
  2024年   6篇
  2023年   14篇
  2022年   56篇
  2021年   74篇
  2020年   35篇
  2019年   45篇
  2018年   58篇
  2017年   55篇
  2016年   71篇
  2015年   97篇
  2014年   114篇
  2013年   125篇
  2012年   165篇
  2011年   161篇
  2010年   81篇
  2009年   64篇
  2008年   94篇
  2007年   61篇
  2006年   69篇
  2005年   65篇
  2004年   49篇
  2003年   44篇
  2002年   31篇
  2001年   15篇
  2000年   24篇
  1999年   16篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   10篇
  1992年   13篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1978年   3篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1967年   3篇
排序方式: 共有1851条查询结果,搜索用时 16 毫秒
51.
We have previously shown that UEV1 is up-regulated in all tumor cell lines examined and when SV40-transformed human embryonic kidney cells undergo immortalization; however, it is unclear whether and how UEV1 plays a critical role in this process. UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13 (ubiquitin conjugating enzyme) catalyzed poly-ubiquitination of target proteins through Lys63-linked chains. One of the target proteins is NEMO/IKKγ (nuclear factor-κB essential modulator/inhibitor of κB protein kinase), a regulatory subunit of IκB kinase in the NF-κB signaling pathway. In this report, we show that constitutive high-level expression of UEV1A alone in cultured human cells was sufficient to cause a significant increase in NF-κB activity as well as the expression of its target anti-apoptotic protein, Bcl-2 (B-cell leukemia/lymphoma 2). Overexpression of UEV1A also conferred prolonged cell survival under serum-deprived conditions, and protected cells against apoptosis induced by diverse stressing agents. All of the effects of Uev1A were reversible upon suppression of UEV1 expression by RNA interference. Our observations presented in this report provide evidence that Uev1A is a critical regulatory component in the NF-κB signaling pathway in response to environmental stresses and identify UEV1A as a potential proto-oncogene.  相似文献   
52.
In vitro propagation of oil palm (Elaeis guineensis Jacq.) frequently induces a somaclonal variant called ‘mantled’ abnormality, in which the stamens of both male and female flowers are transformed into carpels. This leads to a reduced yield or complete loss of the harvest of palm oil. The high frequency of the abnormality in independent lines and the high reversal rate suggest that it is due to an epigenetic change. The type of morphological changes suggest that it involves homeotic MADS box genes that regulate the identity of the flower whorls. We have isolated a number of MADS box genes from oil palm inflorescences by a MADS box-directed mRNA display approach. The isolated partial cDNAs included genes that were likely to function at the initial stages of flowering as well as genes that may function in determination of the inflorescence and the identity of the flower whorls. For four genes that were homologous to genes known to affect the reproductive parts of the flower, full length cDNAs were isolated. These were a B-type MADS box gene which may function in the determination of stamen formation, a C-type gene expected to be involved in stamen and carpel formation, and two putative SEP genes which act in concert with the A-, B- and C-type MADS box gene in determining flower whorl formation. The B-type gene EgMADS16 was functionally characterized as a PISTILLATA orthologue; it was able to complement an Arabidopsis thaliana pi mutant. Whether EgMADS16, or any of the other EgMADS genes, are functionally involved in the mantled condition remains to be established.  相似文献   
53.
Tectona grandis L.f is a timber plant that is commonly referred to as teak. Its wide use as a medicine in the various indigenous systems makes it a plant of importance. A wide gamut of phytoconstituents like alkaloids, phenolic glycosides, steroids, etc. has been reported. A renewed interest in this plant has resulted in scientific investigations by various researchers towards the isolation and identification of active constituents along with scientific proof of its biological activities. The different parts of the plant have been scientifically evaluated for their antioxidant, antipyretic, analgesic, hypoglycemic, wound healing, cytotoxic, and many more biological activities. Documentation of this scientific knowledge is of importance to have consolidated precise information encompassing the various aspects of this plant, which could provide a base for future studies. This review is a compilation of the salient reports on these investigations concerning phytochemistry, the methods used to identify and quantify the constituents, the evaluation methods of the biological activity, toxicological studies, allergies and the patent/patent applications. This will further help researchers to find an area of the gap for future studies.  相似文献   
54.
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity.  相似文献   
55.
56.

Background

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma and infects about 3% world population. Response to interferon therapy depends upon the genotype of the virus and factors associated with the host. Despite a good response to interferon therapy, a considerable number of genotype 3a infected patients remains unalleviated.

Results

In total forty-nine patients including twenty-five non-responders (non-SVR) and twenty-four responders (SVR) were recruited. Patients were tested for viral status at different intervals and the isolated RNA was sequenced for the NS5A region in both groups. The comparison of PKRBD of HCV between the SVR and non-SVR patients did not confirm any significant difference in the number of mutations. However, when the sequence downstream to the PKRBD of NS5A was compared, two important statistically significant mutations were observed; at positions 2309 (Ala to Ser) and 2326 (Gly to Ala). These mutations were then analysed for tertiary protein structure and important structural changes were observed. Statistically significant difference was also observed when age groups of patients were compared; younger patients showed better response than the older ones.

Conclusions

The region between PKRBD and IRRDR may be important for prediction of response to IFN therapy for genotype 3a. ISDR and PKRBD have not shown any involvement in treatment response. Further functional analyses of these findings can help in understanding the involvement of the NS5A region in interferon treatment of HCV-3a infected patients.
  相似文献   
57.

Background

During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.

Method

Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.

Results

PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.

Conclusion

Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma.  相似文献   
58.
At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H2O2), that it has a reduced capacity to degrade H2O2 compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.Salmonella is an important human pathogen which causes a variety of diseases, including gastroenteritis, septicemia, and typhoid fever. In the host, salmonellae reside inside phagocytic cells and are exposed to various host defense mechanisms, including oxidative stress (13). The production of superoxide anion (O2) is crucial, as individuals with chronic granulomatous disease, which is due to a defective phagocyte NADPH oxidase, are more susceptible to infections with Salmonella (10). Likewise, diminished NADPH oxidase activity leads to increased susceptibility to Salmonella in murine macrophages (20-22, 25). Superoxide anion (O2) is weakly reactive and fails to pass through the bacterial cell wall. After conversion to H2O2 by either spontaneous or enzymatic dismutation by superoxide dismutases, it readily diffuses into the bacterial cell and forms reactive hydroxyl radicals (OH) that damage macromolecules such as DNA, proteins, and lipids (12, 17).In principle, Salmonella possesses two classes of enzymes to degrade H2O2. Catalases degrade H2O2 to water and molecular oxygen independent of an additional reductant. Peroxiredoxin-type peroxidases (peroxiredoxins) reduce organic hydroperoxides to alcohols and hydrogen peroxide to water at the expense of NADH or NADPH. In a recent study by Hébrard et al., three members of the catalase family, KatG, KatE, and KatN, and two members of the peroxiredoxin family, AhpC and TsaA, were characterized in Salmonella (14). Previously it had been shown that single katE, katG, and katN Salmonella mutants did not show increased susceptibility to exogenous H2O2 (3, 24). In macrophages a katG katE katN triple mutant had no growth defect, whereas an ahpCF tsaA double mutant showed a reduced growth rate in macrophages (14). These observations point out the multiple routes that have evolved in Salmonella to protect the pathogen against oxidative stress and suggest that peroxiredoxins play a dominant role in the antioxidant defense during infection. In this study we characterized a third peroxiredoxin-type peroxidase, Tpx. Surprisingly, a simple tpx mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) was more susceptible to exogenous H2O2 than the wild type (WT). The mutant grew less well in activated macrophages and showed a reduced peroxidase activity toward H2O2.  相似文献   
59.
Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.  相似文献   
60.
A promising area of novel anti-diabetic therapy involves identification of small molecule activators of the glucokinase enzyme to reduce blood glucose and normalize glucose stimulated insulin secretion. Herein, we report the identification and optimization of a series of 4-sulfonyl-2-pyridone activators. The activators were evaluated for in vitro biochemical activation and pharmacokinetic properties. As part of these efforts, a unique metabolic liability of the 4-sulfonyl-2-pyridone ring system was identified wherein this heterocycle readily undergoes conjugation with glutathione under non-enzymatic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号