首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8940篇
  免费   475篇
  国内免费   17篇
  9432篇
  2023年   75篇
  2022年   201篇
  2021年   442篇
  2020年   182篇
  2019年   235篇
  2018年   285篇
  2017年   220篇
  2016年   323篇
  2015年   419篇
  2014年   477篇
  2013年   665篇
  2012年   655篇
  2011年   682篇
  2010年   389篇
  2009年   299篇
  2008年   382篇
  2007年   365篇
  2006年   333篇
  2005年   275篇
  2004年   256篇
  2003年   196篇
  2002年   187篇
  2001年   143篇
  2000年   127篇
  1999年   120篇
  1998年   56篇
  1997年   33篇
  1996年   30篇
  1995年   43篇
  1994年   28篇
  1993年   38篇
  1992年   69篇
  1991年   96篇
  1990年   71篇
  1989年   71篇
  1988年   60篇
  1987年   77篇
  1986年   58篇
  1985年   59篇
  1984年   53篇
  1983年   46篇
  1982年   40篇
  1980年   35篇
  1979年   62篇
  1978年   44篇
  1977年   37篇
  1975年   32篇
  1974年   38篇
  1973年   43篇
  1972年   30篇
排序方式: 共有9432条查询结果,搜索用时 15 毫秒
991.
Journal of Plant Growth Regulation - Fall cultivation of field crops such as chickpea is prone to the risk of freezing stress. It is required to identify the mechanisms through which plants can...  相似文献   
992.
Molecular Biology Reports - Clinical application of doxorubicin (DOX) is restricted due to its cardiotoxicity, reinforcing the significance of exploring new strategies to counteract DOX-induced...  相似文献   
993.
Molecular Biology Reports - This study was aimed to evaluate the antibiotic resistance, biofilm formation, and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa (CRPA) strains...  相似文献   
994.
Neurochemical Research - Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel...  相似文献   
995.
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.Desiccation tolerance, the ability to survive absolute water contents down to approximately 0.1 g water g−1 dry weight, is a trait found in some bacteria, algae, fungi, as well as animals and plants. In the plant kingdom, desiccation tolerance is common in ferns, mosses, and most seeds and pollen of flowering plants (angiosperms). Resurrection plants, a diverse group of approximately 300 angiosperm species, possess this trait also in their vegetative tissues. These plants are able to withstand prolonged periods of dehydration and to recover within hours to a few days once water is available. A major and interesting aspect in the study of desiccation tolerance in resurrection plants is how they protect themselves against oxidative damage during dehydration, which is often accompanied by conditions of high irradiance (for review, see Bartels and Hussain, 2011; Farrant and Moore, 2011; Morse et al., 2011).A decrease in water content quickly results in lowered leaf stomatal conductance and, consequently, decreased uptake of CO2. This hinders and ultimately blocks the Calvin cycle. The light-driven reactions, however, typically continue well after the onset of water deficiency, with intact chlorophyll-protein complexes absorbing light energy. The imbalance between the light reactions and the downward biochemical pathways results in a lack of electron sinks and in the system becoming overenergized. This, in turn, leads to enhanced generation of reactive oxygen species (ROS), which inflict damage onto photosynthetic components as well as onto other chloroplast and cellular constituents. At times, the damage may be severe and lead to irreversible impairment and finally plant death (Dinakar et al., 2012).Resurrection plants minimize such potential ROS damage by shutting down photosynthesis during early stages of dehydration (Farrant, 2000; Farrant et al., 2007). There are two mechanisms whereby this is achieved. In poikilochlorophyllous resurrection plants, chlorophyll, along with photosynthetic protein complexes, are degraded, and thylakoids, the membranes that host the photosynthetic pigment-protein complexes, are dismantled. This straightforward mechanism prevents the formation of ROS, yet it comes at the cost of resynthesizing photosynthetic components de novo upon rehydration. On the other hand, homoiochlorophyllous species retain most of their photosynthetic complement and so must rely on other means to protect themselves from oxidative damage in the desiccated state. Some of these, such as leaf folding or curling, which minimize the exposure of inner leaves and/or of adaxial (upper) leaf surfaces to the light, and the accumulation of anthocyanins in leaf surfaces, which act as sunscreens, and the presence of reflective hairs and waxy cuticles, reduce the overall absorption of radiation and thus protect against photodamage (Sherwin and Farrant, 1998; Farrant, 2000; Bartels and Hussain, 2011; Morse et al., 2011). ROS that are generated are dealt with by antioxidants, ROS scavengers, and in some cases also by anthocyanins and other polyphenols (Moore et al., 2005; Kytridis and Manetas, 2006; Farrant et al., 2007). Nevertheless, all of these mechanisms are insufficient to completely prevent and/or detoxify all ROS that are formed, necessitating additional means to prevent or deal with possible damage that ROS may inflict during dehydration and while desiccated (Dinakar et al., 2012).The major photoprotective mechanism in plants and algae is nonphotochemical quenching (NPQ), in which excess light energy absorbed at the antennae of PSII is dissipated as heat. NPQ has been shown to be active in desiccation-tolerant bryophytes and pteridiophytes (Eickmeier et al., 1993; Oliver, 1996), in homoiochlorophyllous angiosperms (Alamillo and Bartels, 2001; Georgieva et al., 2009; Dinakar and Bartels, 2012; Huang et al., 2012), and during the initial stages of drying in poikilochlorophyllous angiosperms (Beckett et al., 2012). Photoinhibition, when damage to PSII (mainly to its D1 subunit) exceeds the repair capacity, typically under conditions of light stress, is also observed in homoiochlorophyllous resurrection plants (e.g. Georgieva and Maslenkova, 2006). Other ways to avoid ROS-induced damage include the rerouting of reducing equivalents to alternative electron sinks, such as the water-water cycle and/or photorespiration, as well as structural rearrangements of PSII and light-harvesting antenna (LHCII) complexes into energy-dissipating states (for review, see Dekker and Boekema, 2005; Yamamoto et al., 2014). These latter processes, in particular the ones pertaining to possible changes in PSII-LHCII macrostructure, have not yet been characterized in homoiochlorophyllous resurrection plants.To gain insight into the ways homoiochlorophyllous resurrection plants cope with dehydration while retaining most of their photosynthetic apparatus, we combined microscopic, spectroscopic, and biochemical approaches. Investigation of the supramolecular organization of photosynthetic complexes was carried out using cryoscanning electron microscopy (cryo-SEM) of high-pressure frozen, freeze-fractured leaf samples; to our knowledge, this combination of procedures has not been utilized previously to investigate thylakoid membranes within plant tissues.The studies reveal that during dehydration, the density of PSII in grana membranes gradually decreases. Notably, in the dehydrated state, in which photosynthetic activity is halted, PSII complexes are also observed to be arranged into rows and two-dimensional arrays. These arrangements are proposed to represent quenched PSII complexes that likely minimize the generation of ROS during desiccation. Furthermore, we observe inverted hexagonal (HII) phases in this dry state, and these two structural rearrangements are correlated with the massive accumulation of Suc. Biochemical studies of thylakoid membrane fractions support the finding that the relative level of PSII proteins decreases during dehydration. These analyses also reveal that the level of the cytochrome f subunit of the cytochrome b6f complex decreases quite dramatically and early during dehydration. This provides evidence for an additional level of regulation that inhibits/shuts down the photosynthetic light reactions during desiccation.  相似文献   
996.
997.
Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB<pET101::ecnAB>) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号