首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1030篇
  免费   73篇
  1103篇
  2023年   8篇
  2022年   16篇
  2021年   32篇
  2020年   18篇
  2019年   10篇
  2018年   27篇
  2017年   13篇
  2016年   28篇
  2015年   41篇
  2014年   46篇
  2013年   63篇
  2012年   87篇
  2011年   76篇
  2010年   46篇
  2009年   34篇
  2008年   60篇
  2007年   40篇
  2006年   36篇
  2005年   40篇
  2004年   29篇
  2003年   33篇
  2002年   18篇
  2001年   32篇
  2000年   16篇
  1999年   16篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   13篇
  1991年   12篇
  1990年   17篇
  1989年   9篇
  1988年   14篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   6篇
  1982年   8篇
  1981年   4篇
  1980年   9篇
  1979年   13篇
  1978年   4篇
  1973年   13篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1966年   3篇
排序方式: 共有1103条查询结果,搜索用时 15 毫秒
91.
Two lipoprotein consensus sequences (Leu-X-X-Cys) are found in the presumptive signal peptide region (positions 12 to 15 and 17 to 20) of saliva-binding protein (SsaB) from Streptococcus sanguis 12. Three analogs of SsaB containing Cys-->Gly mutations were constructed by site-directed mutagenesis of pSA2, the recombinant plasmid expressing SsaB. [3H]palmitate was incorporated into SsaB only when the native Cys-20 residue was present. These data show that SsaB is a lipoprotein and that Cys-20 is the critical site for acylation.  相似文献   
92.
Stress modulates calcium mobilization in immune cells   总被引:1,自引:0,他引:1  
Both acute and chronic restraint stress modulated mitogen-induced increases in cytoplasmic free-calcium concentrations ([Ca2+]i) in mouse spleen cells. Dual-color analysis of lymphocyte subpopulations demonstrated that acute (2 hour) restraint stress suppressed mitogen-stimulated increases in [Ca2+]i in CD4+ T cells, but enhanced [Ca2+]i in CD8+ T cells. Chronic restraint stress (2 hours daily for up to 21 days) resulted in a significant suppression of mitogen-stimulated increases in [Ca2+]i in CD4+ T cells at 3 and 7 days, but not at 21 days. CD8+ T cells were unaffected by chronic stress. Chronic stress (for 7 days) had a modest suppressive effect on mitogen-induced Ca2+ responses in B cells. Within T lymphocyte subpopulations, both acute and chronic stress predominantly affected CD4+ T cells, which may induce a functional reversal of the CD4/CD8 ratios in vivo. Such a reversal could result in suppression of a variety of immune responses such as lymphocyte proliferation and antigen-specific antibody production. These findings indicate that the inhibitory effects of stress on calcium mobilization in lymphocytes may be an early event mediating stress-induced immunosuppression.  相似文献   
93.
Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.  相似文献   
94.
95.
Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.  相似文献   
96.
Cancers treated by transplantation are often curative, but immunosuppressive drugs are required to prevent and (if needed) to treat graft‐versus‐host disease. Estimation of an optimal adaptive treatment strategy when treatment at either one of two stages of treatment may lead to a cure has not yet been considered. Using a sample of 9563 patients treated for blood and bone cancers by allogeneic hematopoietic cell transplantation drawn from the Center for Blood and Marrow Transplant Research database, we provide a case study of a novel approach to Q‐learning for survival data in the presence of a potentially curative treatment, and demonstrate the results differ substantially from an implementation of Q‐learning that fails to account for the cure‐rate.  相似文献   
97.
Aims: To improve the digestibility of paddy straw to be used as animal feed by means of selective delignification using white rot fungi. Methods and Results: Solid state fermentation of paddy straw was carried out with some white rot fungi for 60 days. Different biochemical analyses, e.g. total organic matter (TOM) loss, hemicellulose loss, cellulose loss, lignin loss and in vitro digestibility, were carried out along with laccase, xylanase and carboxymethyl cellulase activity. The results were compared with that of a widely studied fungus Phanerochaete chrysosporium, which degraded 464 g kg?1 TOM and enhanced the in vitro digestibility from 185 to 254 g kg?1 after 60 days of incubation. Straw inoculated with Phlebia brevispora possessed maximum crude protein. Conclusions: All the tested white rot fungi efficiently degraded the lignin and enhanced the in vitro digestibility of paddy straw. Phlebia brevispora, Phlebia radiata and P. chrysosporium enhanced the in vitro digestibility almost to similar levels, while the loss in TOM was much lesser in P. brevispora and P. radiata when compared to P. chrysosporium. Significance and Impact of the Study: The study reflects the potential of P. brevispora and P. radiata as suitable choices for practical use in terms of availability of organic matter with higher protein value, selective ligninolysis and better digestibility.  相似文献   
98.
99.

Introduction

Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART).

Methods

Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR.

Results

The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase(SHP)-1 and a reduced expression of positive regulators like Janus kinase(JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells.

Conclusions

Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs further investigation. The information may be useful in design of novel therapeutic targets for better management of disease.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号