首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   7篇
  国内免费   1篇
  52篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
11.
Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell.  相似文献   
12.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
13.
14.
We have shown previously that Spo0AP-dependent sinIR operon expression was substantially down-regulated in abrB null mutant backgrounds. In this report, we show that loss of function mutations in abrB also cause phosphorelay gene expression to be down regulated. abrB null mutations caused diminished vegetative growth-associated sporulation and resulted in a significant reduction in sporulation frequencies at T24. These mutants, however, sporulated at wild-type levels at T48, indicating that sporulation timing was affected. The rvtA11 mutation in spo0A, a deletion mutation in spo0E, and a null mutation in hpr (scoC) rescued sporulation and Spo0AP-dependent gene expression in an abrB mutant background. These data indicate that AbrB and Spo0E may comprise a checkpoint system that regulates the progression of sporulation, allowing exploration of alternate cell states prior to the irrevocable commitment to sporulation.  相似文献   
15.
16.
Sporulation in Bacillus subtilis can be triggered by carbon catabolite limitation. Conversely, carbon source excess can repress the production of extracellular enzymes, motility, and sporulation. Recent studies have implicated a pH-sensing mechanism, involving AbrB, the TCA cycle, Spo0K, and ÏH in controlling the catabolite repression of sporulation gene expression. In an accompanying paper, we demonstrate that the AbrB-dependent pH-sensing mechanism may not be the only means by which carbon catabolites affect sporulation. In the studies reported here, we have examined the molecular basis underlying the catabolite repression phenotype of mutations in the hpr (scoC), rpoD (crsA47), and spo0A (rvtA11) loci. Loss of function mutations in hpr (scoC) restored sporulation gene expression and sporulation in the presence of excess catabolite(s), suggesting that Hpr (ScoC) has a pivotal role in mediating catabolite repression. Moreover, hpr gene expression increased substantially in the presence of excess catabolite(s), further supporting the involvement of Hpr (ScoC) in the carbon catabolite response system. We suggest that alterations in the phosphorelay response to catabolites may be one mechanism by which catabolite-resistant mutants such as crsA and rvtA are able to sporulate in the presence of excess glucoseReceived: 12 November 2002 / Accepted: 13 December 2002  相似文献   
17.
18.
In order to investigate heritability and gene action for yellow rust resistance in wheat, a resistance yellow rust cultivar Aflak was crossed to susceptible cultivar Avocet‘s’. Parents, F1, F2 and F3 generations were cultured according to randomised complete block design with two replications in the research station of Gharakhil, Iran. Parents and other generations were inoculated with 70E0A+ race. Traits including severity and infection type were recorded and then coefficient of infection was calculated. For this trait, generations mean and variance analysis were performed and results showed that there were significant differences among generations for coefficient of infection. Results showed that in addition to additive and dominance effects, at least one kind of epistasis interaction (additive × additive) control this trait. Although additive and dominance effects control this trait, but with attention to generations variance analysis, the results showed that additive variance had important role to control this trait.  相似文献   
19.
In response to nutrient limitations, Bacillus subtilis cells undergo a series of morphological and genetic changes that culminate in the formation of endospores. Conversely, excess catabolites inhibit sporulation. It has been demonstrated previously that excess catabolites caused a decrease in culture medium pH in a process that required functional AbrB. Culture medium acidification was also shown to inhibit ÏH-dependent sporulation gene expression. The studies reported here investigate the effects of AbrB-mediated pH sensing on B. subtilis developmental competence. We have found that neither addition of a pH stabilizer, MOPS (pH 7.5), nor null mutations in abrB blocked catabolite repression of sporulation. Moreover, catabolite-induced culture medium acidification was observed in cultures of catabolite-resistant sporulation mutants, crsA47, rvtA11, and hpr-16, despite their efficient sporulation. These results suggest that AbrB-mediated pH sensing is not the only mechanism regulating catabolite repression of sporulation. The AbrB pathway may function to channel cells toward genetic competence, as opposed to other postexponential differentiation pathways.  相似文献   
20.

Background  

The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL) feeding with a group on lifespan-extending 40% calorie restriction (CR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号