首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   52篇
  389篇
  2021年   5篇
  2020年   3篇
  2018年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   16篇
  2010年   8篇
  2009年   7篇
  2008年   18篇
  2007年   11篇
  2006年   18篇
  2005年   18篇
  2004年   10篇
  2003年   9篇
  2002年   5篇
  2001年   9篇
  2000年   15篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1995年   6篇
  1992年   11篇
  1991年   10篇
  1990年   13篇
  1989年   11篇
  1988年   14篇
  1987年   9篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   7篇
  1973年   6篇
  1972年   8篇
  1971年   2篇
  1969年   2篇
  1967年   3篇
  1966年   3篇
  1941年   2篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
61.
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.  相似文献   
62.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   
63.
Pharmacogenetic approaches can be instrumental for predicting individual differences in response to a therapeutic intervention. Here we used a recently developed murine haplotype-based computational method to identify a genetic factor regulating the metabolism of warfarin, a commonly prescribed anticoagulant with a narrow therapeutic index and a large variation in individual dosing. After quantification of warfarin and nine of its metabolites in plasma from 13 inbred mouse strains, we correlated strain-specific differences in 7-hydroxywarfarin accumulation with genetic variation within a chromosomal region encoding cytochrome P450 2C (Cyp2c) enzymes. This computational prediction was experimentally confirmed by showing that the rate-limiting step in biotransformation of warfarin to its 7-hydroxylated metabolite was inhibited by tolbutamide, a Cyp2c isoform-specific substrate, and that this transformation was mediated by expressed recombinant Cyp2c29. We show that genetic variants responsible for interindividual pharmacokinetic differences in drug metabolism can be identified by computational genetic analysis in mice.  相似文献   
64.
65.
66.
The viscoelastic behavior of rat 9L cellular DNA was studied as a function of the detergent used for lysis, the pH and duration of lysis, and gamma ray dose. For nondenaturing lysis conditions, a model of the DNA was proposed to account for the effects of these agents on the viscoelastic retardation time. It was concluded that these agents affect the hydrodynamic radius of the DNA rather than its molecular weight. For denaturing lysis conditions, molecular weights calculated from the relaxation time were consistent with those calculated from alkaline sucrose sedimentation profiles.  相似文献   
67.
Human neutrophil lysosomal cathepsin G (cat G) exerts broad-spectrum antibacterial action in vitro against Gram-negative and -positive bacteria independent of its serine protease activity. We recently determined that an internal peptide of cat G (HPQYNQR), obtained after digestion of cat G with clostripain, possessed broad-spectrum antibacterial action in vitro, displaying an ED50 of 5 x 10(-5) M. In order to evaluate the structure-antibacterial properties of this peptide, synthetic variants with single alanine substitutions at each position were prepared and tested for antibacterial action. We found that alanine substitution for His-1 or Tyr-4, or certain modifications of the His-1 side chain, produced nonbactericidal peptides. A hexapeptide lacking the COOH-terminal Arg-7 but not a pentapeptide lacking both Gln-6 and Arg-7 possessed in vitro bactericidal activity. Interestingly, the cat G bactericidal peptide displays similarity to sequences within other serine proteases, notably the proposed cytotoxic granzymes present in the cytolytic granules of human and mouse cytotoxic T lymphocytes. We now report that an internal peptide of one human granzyme (granzyme B) with the sequence of HPAYNPK also displays bactericidal action in vitro. Our results suggest that an internal antibacterial domain among human serine proteases cat G and granzyme B has been functionally conserved through evolution perhaps for the purpose of host defense against microbial pathogens and targets of cytotoxic T lymphocyte killing.  相似文献   
68.
69.
Karyotypes from 72-hour whole blood cultures were compared for six species of macaques (Macaca arctoides, M. fascicularis, M. mulatta, M. nemestrina, M. nigra, and M. radiata) and one species of mangabey (Cercocebus atys). G-bands, sequential C-bands, and late replication patterns were studied. Results showed a variation in a single chromosome pair which differentiated C. atys from the macaques. Heteromorphic variation in silver stained nucleolar organizing regions was seen between and within individuals. This data supports previous work showing the highly conserved nature of the chromosomes of the subfamily Cercopithecus.  相似文献   
70.
In this study we report a kinetic model for the alpha-thrombin-catalyzed production of fibrin I and fibrin II at pH 7.4, 37 degrees C, gamma/2 0.17. The fibrin is produced by the action of human alpha-thrombin on plasma levels of human fibrinogen in the presence of the major inhibitor of alpha-thrombin in plasma, antithrombin III (AT). This model quantitatively accounts for the time dependence of alpha-thrombin-catalyzed release of fibrinopeptides A and B concurrent with the inactivation of alpha-thrombin by AT and delineates the concerted interactions of alpha-thrombin, fibrin(ogen), and AT during the production of a fibrin clot. The model also provides a method for estimating the concentration of alpha-thrombin required to produce a clot of known composition and predicts a direct relationship between the plasma concentration of fibrinogen and the amount of fibrin produced by a bolus of alpha-thrombin. The predicted relationship between the concentration of fibrinogen and the amount of fibrin produced in plasma provides a plausible explanation for the observed linkage between plasma concentrations of fibrinogen and the risk for ischemic heart disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号