首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   11篇
  170篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   21篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   11篇
  2014年   8篇
  2013年   14篇
  2012年   11篇
  2011年   13篇
  2010年   7篇
  2009年   3篇
  2008年   12篇
  2007年   12篇
  2006年   6篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
41.
Prostate cancer is the most common cancer among men in the U.S. and worldwide, and androgen-deprivation therapy remains the principal treatment for patients. Although a majority of patients initially respond to androgen-deprivation therapy, most will eventually develop castration resistance. An increased understanding of the mechanisms that underline the pathogenesis of castration resistance is therefore needed to develop novel therapeutics. LNCaP and PC3 prostate cancer cell lines are models for androgen-dependence and androgen-independence, respectively. Herein, we report the comparative analysis of these two prostate cancer cell lines using integrated global proteomics and glycoproteomics. Global proteome profiling of the cell lines using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and two- dimensional (2D) liquid chromatography-tandem MS (LC-MS/MS) led to the quantification of 8063 proteins. To analyze the glycoproteins, glycosite-containing peptides were isolated from the same iTRAQ-labeled peptides from the cell lines using solid phase extraction followed by LC-MS/MS analysis. Among the 1810 unique N-linked glycosite-containing peptides from 653 identified N-glycoproteins, 176 glycoproteins were observed to be different between the two cell lines. A majority of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 21 differentially expressed glycoproteins showed no change at the protein abundance level, indicating that the glycosylation site occupancy was different between the two cell lines. To determine the glycosylation heterogeneity at specific glycosylation sites, we further identified and quantified 1145 N-linked glycopeptides with attached glycans in the same iTRAQ-labeled samples. These intact glycopeptides contained 67 glycan compositions and showed increased fucosylation in PC3 cells in several of the examined glycosylation sites. The increase in fucosylation could be caused by the detected changes in enzymes belonging to the glycan biosynthesis pathways of protein fucosylation observed in our proteomic analysis. The altered protein fucosylation forms have great potential in aiding our understanding of castration resistance and may lead to the development of novel therapeutic approaches and specific detection strategies for prostate cancer.Androgen is important for the development, function, and proliferation of both normal and cancerous prostate cells (1). At the earliest stage of prostate cancer, prostate cancer cells are dependent on the presence of androgen, and androgen-deprivation therapy (ADT)1 is used to treat prostate cancer (2). However, cells become androgen-independent as a result of androgen deprivation therapy, and they become more aggressive. This results in androgen-independent remission of prostate cancer (3). LNCaP and PC3 cell lines have been widely used as models of prostate cancer. LNCaP is an androgen-dependent cancer cell line, whereas PC3 is an androgen-independent cell line. The LNCaP cell line is less aggressive as compared with PC3 cells that have a high metastatic potential. LNCaP and PC3 cells have been previously studied by genomics and proteomics approaches to understand the mechanism(s) responsible for the aggressive and metastatic nature of prostate cancer (48).Post-translational modifications (PTMs) such as phosphorylation are important in the function of the androgen-dependent pathway. Androgen receptors bind to androgen and are then phosphorylated before translocating into the nucleus (3). However, protein PTMs cannot be directly inferred from gene expression. Glycosylation is an abundant PTM and most cell surface or secreted proteins are expected to be glycosylated (9). Glycosylation is one of the more complex PTMs because of the fact that different glycosylation machineries are present in different cells, multiple glycosylation sites exist on many glycoproteins and each glycosylation site can be modified by several different glycans (10, 11). Such microheterogeneity of glycan structures at each glycosylation site with different site occupancy significantly increases the structural diversity of each glycoprotein that is specific to the microenvironment of the cells where each glycoprotein is produced. Although these characteristics of protein glycosylation pose considerable challenges to the structural and functional analyses of glycoproteins, we expect that cell and cell microenvironment-specific glycoproteins differ according to the physiological and pathological states of the cells. Aberrant glycosylation is the result of alterations in glycosylation genes that may lead to the development of cancer. A systematic approach to analyze proteins, glycoproteins, and glycosylation is expected to permit the identification of the glycoprotein alterations that are specific to each cell state and aid the understanding of the functions of glycosylation because alterations in glycosylation can affect glycoprotein abundance or function (12, 13). A detailed analysis of glycoproteins in cancer cells with different functions is needed to understand tumor biology and how glycoproteins can function as therapeutic targets or diagnostic biomarkers (14, 15).In this study, a comprehensive proteomic and glycoproteomic platform was designed to investigate the differences in proteins, glycoproteins, and site-specific glycosylation forms of glycoproteins between LNCaP and PC3 cells (Fig. 1). To our knowledge, this is the first report to characterize glycoproteins with respect to protein abundance, glycosylation occupancy, and glycosylation heterogeneity at specific glycosites. These altered glycosylation patterns among proteins between LNCaP and PC3 cell lines have a significant potential to aid our understanding of the altered glycoprotein expression in prostate cancer cells, thus leading to novel specific methods to detect aggressive prostate cancer.Open in a separate windowFig. 1.Schematic representation of the workflow for the integrated analysis of glycosite-containing peptides, global protein expression, and intact glycopeptides. Proteins were obtained from LNCaP and PC3 cell lines followed by tryptic digestion and iTRAQ labeling. Labeled peptide samples were then combined and separated into two aliquots. One aliquot was enriched for glycosite-containing peptides using Solid Phase Extraction of Glycopeptides (SPEG) and the other aliquot was used for bRPLC separation followed by the analysis of global proteins and intact glycopeptides. Finally, peptides were analyzed using LC-MS/MS.  相似文献   
42.
Next-generation sequencing technologies for environmental DNA research   总被引:7,自引:0,他引:7  
Since 2005, advances in next-generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species-specific DNA barcodes has been a key application of next-generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next-generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next-generation sequencing technologies in regard to their application for environmental DNA analysis.  相似文献   
43.
Growth factor withdrawal from hemopoietic cells results in activation of the mitochondrial pathway of apoptosis. Members of the Bcl-2 family regulate this pathway, with anti-apoptotic members counteracting the effects of pro-apoptotic members. We investigated the effect on Mcl-1 function of mutation at a conserved threonine 163 residue (T163) in its proline, glutamate, serine, and threonine rich (PEST) region. Under normal growth conditions, Mcl-1 half-life increased with alteration of T163 to glutamic acid, but decreased with mutation to alanine. However, both T163 mutants exhibited greater pro-survival effects compared with the wild type, which can be explained by an increased stability of the T163A mutant in cytokine-starved conditions. Both the mutant forms exhibited prolonged binding to pro-apoptotic Bim in cytokine-deprived cells. The extent to which Mcl-1 mutants were able to exert their anti-apoptotic effects correlated with their ability to associate with Bim. We further observed that primary bone marrow derived macrophages survived following cytokine withdrawal as long as Bim and Mcl-1 remained associated. In our study, we were unable to detect a role for GSK-3-mediated regulation of Mcl-1 expression. Based on these results we propose that upon cytokine withdrawal, survival of hemopoietic cells depends on association between Mcl-1 and Bim. Furthermore, alteration of T163 of Mcl-1 may change the protein such that its association with Bim is affected, resulting in prolonged association and increased survival.  相似文献   
44.
Sulfated progesterone metabolite (P4-S) levels are raised in normal pregnancy and elevated further in intrahepatic cholestasis of pregnancy (ICP), a bile acid-liver disorder of pregnancy. ICP can be complicated by preterm labor and intrauterine death. The impact of P4-S on bile acid uptake was studied using two experimental models of hepatic uptake of bile acids, namely cultured primary human hepatocytes (PHH) and Na+-taurocholate co-transporting polypeptide (NTCP)-expressing Xenopus laevis oocytes. Two P4-S compounds, allopregnanolone-sulfate (PM4-S) and epiallopregnanolone-sulfate (PM5-S), reduced [3H]taurocholate (TC) uptake in a dose-dependent manner in PHH, with both Na+-dependent and -independent bile acid uptake systems significantly inhibited. PM5-S-mediated inhibition of TC uptake could be reversed by increasing the TC concentration against a fixed PM5-S dose indicating competitive inhibition. Experiments using NTCP-expressing Xenopus oocytes confirmed that PM4-S/PM5-S are capable of competitively inhibiting NTCP-mediated uptake of [3H]TC. Total serum PM4-S + PM5-S levels were measured in non-pregnant and third trimester pregnant women using liquid chromatography-electrospray tandem mass spectrometry and were increased in pregnant women, at levels capable of inhibiting TC uptake. In conclusion, pregnancy levels of P4-S can inhibit Na+-dependent and -independent influx of taurocholate in PHH and cause competitive inhibition of NTCP-mediated uptake of taurocholate in Xenopus oocytes.  相似文献   
45.

Background

Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart.

Methods and Results

Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters.

Conclusion

We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.  相似文献   
46.
Failure of the adaptive immune response to control infection with the hepatitis C virus (HCV) can result from mutational escape in targeted T-cell epitopes. Recent studies suggest that T-cell immune pressure is an important factor in the evolution of the nonstructural proteins in HCV. The aim of this study was to characterize the forces that contribute to viral evolution in an HLA-A*01-restricted epitope in HCV NS3. This epitope represents a potentially attractive target for vaccination strategies since it is conserved across all genotypes. In our cohort of subjects with chronic HCV infection (genotype 1b or 3a), it is a frequently recognized CD8 epitope in HLA-A*01-positive subjects. Viral sequence data reveal that an escape variant is the dominant residue in both genotypes. The predominant Y1444F substitution seemingly impairs binding to the HLA-A*01 molecule, which may have an important impact on the ability to prime a functional CD8 response upon infection. Interestingly, a case of evolution toward the prototype sequence was observed during chronic infection, possibly because the helicase activity of the protein containing the Y1444F substitution is reduced compared to the prototype sequence. Comparison of HCV sequences from Asia and Europe suggests that the frequency of the HLA-A*01 allele in a population may influence the frequency of the escape variant in circulating strains. These data suggest a complex interaction of multiple forces shaping the evolution of HCV in which immune pressure both within the individual and also at the population level in addition to functional constraints are important contributing factors.  相似文献   
47.
48.
In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1.  相似文献   
49.
This study was conducted to measure the effect of the level of daily milk yield on the excretion rate of progesterone (P4) in milk and faeces in high-producing (HP) and low-producing (LP) lactating dairy cows. A GnRH-agonist was implanted to block endogenous production of P4. A CIDR device was inserted into the vagina and left in place for 11 days. The average and peak milk yields were greater in HP cows (P < 0.0001). Mean plasma concentrations of P4 were also similar in both groups (P = 0.44), even though the average mass of P4 delivered from a CIDR device was higher with HP cows (P = 0.02). Average milk P4 concentration was similar in both groups (P = 0.81), so that average daily excretion of P4 in the milk was greater with HP cows (P = 0.05). The concentrations (P = 0.83) and daily yields (P = 0.4) of total faecal progesterone metabolites were not affected by level of milk yield. These data show that the concentrations of plasma and milk P4, and the concentration and yield of P4 metabolites are not affected by the levels of daily milk yield.  相似文献   
50.
Six patients with insufficient soft-tissue coverage after lower limb trauma were treated with pedicled fillet of foot flaps to achieve primary stump closure and to preserve leg length. The flaps used were all based on either the posterior tibial neurovascular pedicle, the anterior tibial neurovascular pedicle, or both. Five flaps survived; one patient required conversion of a through-knee to an above-knee amputation and debridement of the flap because of venous thrombosis of the pedicle. In three of the cases, a functional knee joint was preserved. The patients ranged in age from 21 to 54 years, the mean hospital stay was 55.5 days (range, 28 to 76 days), and the mean follow-up time was 14.5 months. Despite an average of 4.3 procedures from initial admission to first discharge and an average of 2.0 postamputation procedures to achieve primary stump healing, all patients have achieved independent mobility with their prosthesis. The advantages of preserving leg length and, where possible, preserving a functional knee joint compensate for repeated procedures on these patients. When planned well, a pedicled fillet of foot flap therefore achieves the aims of amputation, namely, providing primary healing of a sensate, durable, cylindrical stump that is pain-free and preserves maximal leg length. This is achieved with no donor-site morbidity and with no need for microvascular reconstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号