首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   4篇
  2002年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
11.
A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-(14)C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-(14)C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-(14)C]arachidonic acid.  相似文献   
12.

Background

For a combination of reasons (including data generation protocols, approaches to taxon and gene sampling, and gene birth and loss), estimated gene trees are often incomplete, meaning that they do not contain all of the species of interest. As incomplete gene trees can impact downstream analyses, accurate completion of gene trees is desirable.

Results

We introduce the Optimal Tree Completion problem, a general optimization problem that involves completing an unrooted binary tree (i.e., adding missing leaves) so as to minimize its distance from a reference tree on a superset of the leaves. We present OCTAL, an algorithm that finds an optimal solution to this problem when the distance between trees is defined using the Robinson–Foulds (RF) distance, and we prove that OCTAL runs in \(O(n^2)\) time, where n is the total number of species. We report on a simulation study in which gene trees can differ from the species tree due to incomplete lineage sorting, and estimated gene trees are completed using OCTAL with a reference tree based on a species tree estimated from the multi-locus dataset. OCTAL produces completed gene trees that are closer to the true gene trees than an existing heuristic approach in ASTRAL-II, but the accuracy of a completed gene tree computed by OCTAL depends on how topologically similar the reference tree (typically an estimated species tree) is to the true gene tree.

Conclusions

OCTAL is a useful technique for adding missing taxa to incomplete gene trees and provides good accuracy under a wide range of model conditions. However, results show that OCTAL’s accuracy can be reduced when incomplete lineage sorting is high, as the reference tree can be far from the true gene tree. Hence, this study suggests that OCTAL would benefit from using other types of reference trees instead of species trees when there are large topological distances between true gene trees and species trees.
  相似文献   
13.
Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-β-D-glucuronic (celluronic) acid (pH 7.0), poly-β-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0–9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.  相似文献   
14.
Four different bacterial isolates obtained from a stable bacterial consortium were capable of utilizing pentachlorophenol (PCP) as sole carbon and energy source. The consortium was developed by continuous enrichment in the chemostat. The degradation of PCP by bacterial strain was preceded through an oxidative route as indicated by accumulation of tetrachloro-ρ-hydroquinone and dichlorohydroquinone as determined by high performance liquid chromatography (HPLC). Among the four isolates, Pseudomonas fluorescens exhibited maximum degradation capability and enzyme production. PCP-monooxygenase enzyme was extracted from culture extract and fractionated by DEAE-cellulose ion exchange chromatography. The molecular weight of the enzyme, purified from Pseudomonas fluorescens, determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography was found to be 24,000 Da. Received: 22 July 2002 / Accepted: 23 September 2002  相似文献   
15.
One of the main barriers to accurate computational protein structure prediction is searching the vast space of protein conformations. Distance restraints or inter‐residue contacts have been used to reduce this search space, easing the discovery of the correct folded state. It has been suggested that about 1 contact for every 12 residues may be sufficient to predict structure at fold level accuracy. Here, we use coarse‐grained structure‐based models in conjunction with molecular dynamics simulations to examine this empirical prediction. We generate sparse contact maps for 15 proteins of varying sequence lengths and topologies and find that given perfect secondary‐structural information, a small fraction of the native contact map (5%‐10%) suffices to fold proteins to their correct native states. We also find that different sparse maps are not equivalent and we make several observations about the type of maps that are successful at such structure prediction. Long range contacts are found to encode more information than shorter range ones, especially for α and αβ‐proteins. However, this distinction reduces for β‐proteins. Choosing contacts that are a consensus from successful maps gives predictive sparse maps as does choosing contacts that are well spread out over the protein structure. Additionally, the folding of proteins can also be used to choose predictive sparse maps. Overall, we conclude that structure‐based models can be used to understand the efficacy of structure‐prediction restraints and could, in future, be tuned to include specific force‐field interactions, secondary structure errors and noise in the sparse maps.  相似文献   
16.
Traditional theories propose that testosterone should increase dominance and other status-seeking behaviors, but empirical support has been inconsistent. The present research tested the hypothesis that testosterone's effect on dominance depends on cortisol, a glucocorticoid hormone implicated in psychological stress and social avoidance. In the domains of leadership (Study 1, mixed-sex sample) and competition (Study 2, male-only sample), testosterone was positively related to dominance, but only in individuals with low cortisol. In individuals with high cortisol, the relation between testosterone and dominance was blocked (Study 1) or reversed (Study 2). Study 2 further showed that these hormonal effects on dominance were especially likely to occur after social threat (social defeat). The present studies provide the first empirical support for the claim that the neuroendocrine reproductive (HPG) and stress (HPA) axes interact to regulate dominance. Because dominance is related to gaining and maintaining high status positions in social hierarchies, the findings suggest that only when cortisol is low should higher testosterone encourage higher status. When cortisol is high, higher testosterone may actually decrease dominance and in turn motivate lower status.  相似文献   
17.
Highly sensitive label-free detection of kanamycin is achieved with an aptamer sensor based on a conducting polymer/gold self-assembled nanocomposite. The sensor probe is fabricated by covalently immobilizing an in vitro selected DNA aptamer for kanamycin onto gold nanoparticle (AuNP)-comprised conducting polymer, poly-[2, 5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (poly-DPB). The self-assembling of DPB on AuNP is investigated by TEM and UV-vis spectroscopy and the modification of the aptamer sensor is characterized using XPS and electrochemical impedance spectroscopy. The probe is applied to detect kanamycin by using voltammetric techniques. The sensor shows a pair of redox peaks around 0.26/ 0.08 V (vs. Ag/AgCl) for kanamycin captured by the aptamer-immobilized probe. The parameters that can affect the response, such as aptamer concentration, incubation time, temperature, and pH are optimized. The calibration plot shows a linear range from 0.05 μM to 9.0 μM kanamycin with a detection limit of 9.4±0.4 nM. The proposed aptamer sensor is examined with a real sample.  相似文献   
18.
Cancers are characterized by unrestricted cell division and independency of growth factor and other external signal responsiveness. Eukaryotic parental cells of tumors, on the other hand, constitute tissues and other higher structures like organs and systems and are capable of performing various functions in a highly co-ordinated fashion. Hence, cancer cells may be considered as entities capable of incessant growth and cell division but lacking any evolutionarily advanced intracellular or intercellular regulation. Since receptor tyrosine kinases are highly altered and exist in deregulated/constitutively active forms in cancer cells - achieved through various epigenetic mechanisms - we hypothesize the functional RTKs in cancer cells to resemble their counterparts in more primitive species. Analysis of RTK sequences of various species and of cancer is, therefore, expected to prove this hypothesis. Association rule in data mining can reveal the hidden biological information. This study utilizes the Boolean association rule to mine the occurrence pattern of glycine, arginine and alanine in receptor tyrosine kinases (RTKs) of invertebrates, vertebrates and cancer related vertebrate RTKs based on protein sequence informations. The results reveal that vertebrate cancer RTKs resembles prokaryotes and invertebrate RTKs showing an increasing trend of glycine, alanine and decreasing trend in arginine composition. The aminoacid compositions of vertebrates: invertebrates: prokaryotes: vertebrate cancer with respect to Glycine (>=6.1) were 42.86: 50.0: 85.71: 100%, Alanine (>=6.2) were 10.72: 66.67: 85.71: 100%, whereas Arginine (>=5.9) were 21.43: 16.67: 14.29: 0%, respectively. In conclusion, results from this study supports our hypothesis that cancer cells may resemble lower organisms since functionally cancer cells are unresponsive to external signals and various regulatory mechanisms typically found in higher eukaryotes are largely absent.  相似文献   
19.
Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis.  相似文献   
20.
Although the folding rates of proteins have been studied extensively, both experimentally and theoretically, and many native state topological parameters have been proposed to correlate with or predict these rates, unfolding rates have received much less attention. Moreover, unfolding rates have generally been thought either to not relate to native topology in the same manner as folding rates, perhaps depending on different topological parameters, or to be more difficult to predict. Using a dataset of 108 proteins including two-state and multistate folders, we find that both unfolding and folding rates correlate strongly, and comparably well, with well-established measures of native topology, the absolute contact order and the long range order, with correlation coefficient values of 0.75 or higher. In addition, compared to folding rates, the absolute values of unfolding rates vary more strongly with native topology, have a larger range of values, and correlate better with thermodynamic stability. Similar trends are observed for subsets of different protein structural classes. Taken together, these results suggest that choosing a scaffold for protein engineering may require a compromise between a simple topology that will fold sufficiently quickly but also unfold quickly, and a complex topology that will unfold slowly and hence have kinetic stability, but fold slowly. These observations, together with the established role of kinetic stability in determining resistance to thermal and chemical denaturation as well as proteases, have important implications for understanding fundamental aspects of protein unfolding and folding and for protein engineering and design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号