首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
  133篇
  2024年   4篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   3篇
  2016年   11篇
  2015年   10篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
111.

Salinity restricts plant growth and production by specific ions toxicity to particular plants. Cl ion is exceptionally toxic to citrus. Citrus rootstock and scion has a significant effect on each other under unfavourable conditions. Nevertheless, their specific response can be different depending on the way to translocate and compartment the toxic ions, or to induce antioxidant systems. In this paper, we studied the behaviour of diploid (2x) and tetraploid (4x) Volkamer lemon rootstocks grafted with commercial cultivar Kinnow mandarin (KM/VM2x and KM/VM4x, respectively) when exposed to moderate (75 mM) and high salt stress (150 mM). Both genotypes showed a decrease in their photosynthetic variables (Pn, gs, E, Fv/Fm, Fv′/Fm′, NPQ), and the decline was more significant in KM/VM2x plants as compared to KM/VM4x. The highest increase in the concentration of stress indicators (MDA and H2O2) was observed in leaves and roots of KM/VM2x at 75 and 150 mM of salt stress. The KM/VM4× showed the maximum increase in antioxidative enzymes (SOD, CAT, POD, APx, GR) and osmolytes (PRO, GB) in leaves and roots at 75 and 150 mM. Minerals (Cl ion, Na, K, P, N, Ca) accumulation was also significantly affected in leaves and roots of KM/VM2x and KM/VM4x under moderate and high NaCl stress. Overall, our results showed that Cl ion accumulation presents a robust correlation with stress indicators and their scavenging enzymes in leaves and roots. Moreover, 2x scion significantly mitigated by the 4x rootstock and showed more tolerance as compared to grafted on 2x rootstock.

  相似文献   
112.
The industrial application of organophosphates provides the opportunity for environmental exposure. While the toxicity of organophosphate compounds has been the target of significant work, studies directed towards the identification of metabolite markers to assess phosphate exposure are more limited. In this study the urine metabolite profiles for rats following single dose exposure to either tributyl phosphate (TBP, 15 mg/kg body weight) or triphenyl phosphate (TPP, 2 and 20 mg/kg body weight) were characterized using proton nuclear magnetic resonance (1H NMR) and orthogonal-partial least squares discriminate analysis (O-PLSDA). Using the developed O-PLSDA models it was possible to clearly identify TBP or TPP exposed animals. The performance of these models was validated using cross validation and permutation testing. Utilizing the variable importance in projection (VIP) coefficients from the O-PLSDA the metabolites that were most responsible for the classification of TBP or TPP exposure were determined. This initial study demonstrates the potential for NMR metabonomic studies for the identification and separation of environmental exposure to organophosphates.  相似文献   
113.
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications.  相似文献   
114.
Cultivation of crops in soils with high salt (NaCl) content can affect plant development. We examined the morphological and physiological mechanisms of salt tolerance in tomato. The responses of 72 accessions of tomato (Solanum lycopersicum) to salinity were compared by measuring shoot and root lengths, and fresh shoot and root weights relative to those of controls (plants grown in normal salt levels). All traits were reduced at the seedling stage when salinity levels were increased. The accession x salinity interaction was significant for all traits. Root length had higher heritability than other traits and was used as a selection criterion to identify salt-tolerant and -non-tolerant accessions. On the basis of root length, accessions LA2661, CLN2498A, CLN1621L, BL1176, 6233, and 17870 were considered to be more tolerant than accessions 17902, LO2875 and LO4360. The degree of salt tolerance was checked by analyzing K+ and Na+ concentrations and K+/Na+ ratio in tissues of plants treated with 10 and 15 dS/m salinity levels. Tolerance of these accessions to salinity was most associated with low accumulation of Na+ and higher K+/Na+ ratios.  相似文献   
115.
116.
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.  相似文献   
117.
Abstract: In a previous study, it was observed that the activity of rolipram-sensitive, low- K m, cyclic AMP phosphodiesterase (PDE4) was decreased in vivo with diminished noradrenergic stimulation. The results of the present experiments indicated that the reduction in the activity may be associated with down-regulation of PDE4 protein. Immunoblot analysis using PDE4-specific, subfamily-nonspecific antibody (K116) revealed four major bands of PDE4 in rat cerebral cortex; those with apparent molecular masses of 109 and 102 kDa are variants of PDE4A. Diminished noradrenergic activity, produced by intracerebroventricular infusion of 6-hydroxydopamine (6-OHDA) or chronic subcutaneous infusion of propranolol, decreased the intensities of the protein bands for the 109- and 102-kDa PDE4A variants in rat cerebral cortex but not of the 98- or 91-kDa PDE4 forms. 6-OHDA-induced noradrenergic lesioning also decreased the content of 102-kDa PDE4A in hippocampus as labeled by PDE4A-specific antibody (C-PDE4A). Enhanced noradrenergic stimulation up-regulated PDE4 in cerebral cortex. This was indicated by the finding that repeated treatment with desipramine increased the intensity of the protein band for the 102-kDa PDE4 but not for the other variants of PDE4. These results suggest that PDE4 subtypes are differentially regulated at the level of expression, as evidenced by an apparent change in the amount of PDE4 protein, following changes in noradrenergic activity. These observations are consistent with the notion that PDE4s, especially the PDE4A variants with molecular masses of 109 and 102 kDa, play an important role in maintaining the homeostasis of the noradrenergic signal transduction system in the brain and may be involved in the mediation of antidepressant activity.  相似文献   
118.

Hydrogen sulfide (H2S) has emerged as a novel gaseous signal molecule with multifarious effects on seed germination, plant growth, development, and physiological processes. Due to its dominant role in plant stress tolerance and cross-adaptation, it is getting more attention nowadays, although it has been largely referred as toxic and environmental hazardous gas. In this review work, we are highlighting the importance of H2S as an essential gaseous molecule to help in signaling, metabolism, and stress tolerance in plants. Firstly, production of H2S from different natural and artificial sources were discussed with its transformation from sulfur (S) to sulfate (SO42−) and then to sulfite (SO32−). The importance of different kinds of transporters that helps to take SO42− from the soil solution was presented. Mainly, these transporters are SULTRs (H+/SO42− cotransporters) and multigene family encodes them. Furthermore, these SULTRs have LAST (Low affinity transport proteins), HAST (High affinity transport proteins), vacuole transporters, and plastid transporters. Since it is well known that there is strong relationship between SO42− and synthesis of hydrogen sulfide or dihydrogen sulfide or sulfane in plant cells. Thus, cysteine (Cys) metabolism through which H2S could be generated in plant cell with the role of different enzymes has been presented. Furthermore, H2S in interaction with other molecules could help to mitigate biotic and abiotic stress. Based on this review work, it can be concluded that H2S has potential to induce cross-adaptation to biotic and abiotic stress; thus, it is recommended that it should be considered in future studies to answer the questions like what are the receptors of H2S in plant cell, where in plants the physiological concentration of H2S is high in response to multiple stress and how it induces cross-adaptation by interaction with other signal molecules.

  相似文献   
119.

Background

Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD).

Methods

We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.

Results

Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.

Conclusions

Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号