首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7607篇
  免费   473篇
  国内免费   59篇
  2021年   76篇
  2020年   50篇
  2019年   91篇
  2018年   117篇
  2017年   94篇
  2016年   131篇
  2015年   136篇
  2014年   177篇
  2013年   474篇
  2012年   305篇
  2011年   267篇
  2010年   221篇
  2009年   188篇
  2008年   293篇
  2007年   281篇
  2006年   291篇
  2005年   253篇
  2004年   294篇
  2003年   301篇
  2002年   326篇
  2001年   259篇
  2000年   259篇
  1999年   199篇
  1998年   73篇
  1997年   66篇
  1994年   56篇
  1993年   56篇
  1992年   179篇
  1991年   162篇
  1990年   181篇
  1989年   190篇
  1988年   169篇
  1987年   155篇
  1986年   138篇
  1985年   132篇
  1984年   117篇
  1983年   89篇
  1982年   72篇
  1981年   68篇
  1980年   54篇
  1979年   99篇
  1978年   77篇
  1977年   71篇
  1976年   67篇
  1975年   65篇
  1974年   72篇
  1973年   64篇
  1972年   78篇
  1970年   53篇
  1968年   50篇
排序方式: 共有8139条查询结果,搜索用时 31 毫秒
941.
Transient cerebral ischemia is a pathological process whereby an irreversible suppression of protein synthesis is believed to contribute to the extent of cell death in vulnerable neurons. Endoplasmic reticulum (ER) dysfunction has been identified as being responsible for ischemia-induced shut-down of translation. Recovery from ER dysfunction is facilitated by GADD34, a protein that dephosphorylates eukaryotic initiation factor (eIF)2alpha-P and thus reactivates protein synthesis. We investigated ischemia-induced changes in GADD34 levels in wild-type and Cu2+/Zn2+ SOD (SOD1) over-expressing rats. Transient global cerebral ischemia was induced by common carotid artery occlusion. Tissue samples were taken from the vulnerable hippocampal CA1 subfield and the resistant cerebral cortex of the right and left hemispheres for evaluation of changes in gadd34 mRNA and GADD34 protein levels. In wild-type animals, we found significantly lower GADD34 levels than in SOD1 transgenes but no differences in gadd34 mRNA levels, implying that superoxides regulate gadd34 translation. After ischemia, GADD34 protein levels were significantly increased in the cortex but not in the CA1 subfield, and these changes occurred earlier in SOD1 transgenic than in wild-type animals. The rise in gadd34 mRNA levels did not differ in the cortex and CA1 subfield, implying that gadd34 expression is regulated at the translational level.  相似文献   
942.
Although endothelial dysfunction deteriorates diabetic angiopathy, the mechanisms are obscure. We revealed that high glucose augmented eNOS through stimulation of eNOS mRNA in cultured BAECs. NO was decreased and O2- was increased simultaneously. NOS inhibitor, inhibited O2- release, so did NADPH oxidase inhibitor. The effects were synergistic. Both intracellular BH4 level and GTPCH1 activity were decreased by high glucose, in line with decrease of GTPCH1 mRNA. HMG-CoA reductase inhibitor, atorvastatin increased GTPCH1 mRNA and activity, and BH4 level. Conclusively, high glucose leads to eNOS dysfunction by inhibiting BH4 synthesis and atorvastatin stimulate BH4 synthesis directly, and it may work as atherogenic process.  相似文献   
943.
In a previous study, we established a system for visualizing the development of germ cells from mouse embryonic stem (ES) cells in culture using knock-in ES clones in which visual reporter genes were expressed from the mouse vasa homolog, Mvh. While assessing various culture conditions, we found that germ-cell formation was markedly depressed in low glucose medium. Using a repeated polymerase chain reaction (PCR) subtraction method, we identified genes that were differentially expressed in low versus high glucose media. Three genes that were predominantly expressed in high glucose medium, thioredoxin-interacting protein (Txnip), pituitary tumor-transforming gene 1 (Pttg), and RuvB-like protein 2 (RuvBl2), were further investigated. These genes were also found to be highly expressed in adult and embryonic gonads, and RuvBl2 in particular, which encodes an ATP-dependent DNA helicase, was specifically detected in the spermatocytes and spermatids of the adult testis as well as in primordial germ cells. Furthermore, using a green fluorescent protein (GFP) fusion construct, we found that RuvBl2 was expressed in both the nucleus and cytoplasm of testicular germ cells. These findings suggest a possible relationship between glucose metabolism and germ-cell development.  相似文献   
944.
Triterpenes exhibit a wide range of structural diversity produced by a sequence of biosynthetic reactions. Cyclization of oxidosqualene is the initial origin of structural diversity of skeletons in their biosynthesis, and subsequent regio- and stereospecific hydroxylation of the triterpene skeleton produces further structural diversity. The enzymes responsible for this hydroxylation were thought to be cytochrome P450-dependent monooxygenase, although their cloning has not been reported. To mine these hydroxylases from cytochrome P450 genes, five genes (CYP71D8, CYP82A2, CYP82A3, CYP82A4 and CYP93E1) reported to be elicitor-inducible genes in Glycine max expressed sequence tags (EST), were amplified by PCR, and screened for their ability to hydroxylate triterpenes (beta-amyrin or sophoradiol) by heterologous expression in the yeast Saccharomyces cerevisiae. Among them, CYP93E1 transformant showed hydroxylating activity on both substrates. The products were identified as olean-12-ene-3beta,24-diol and soyasapogenol B, respectively, by GC-MS. Co-expression of CYP93E1 and beta-amyrin synthase in S. cerevisiae yielded olean-12-ene-3beta,24-diol. This is the first identification of triterpene hydroxylase cDNA from any plant species. Successful identification of a beta-amyrin and sophoradiol 24-hydroxylase from the inducible family of cytochrome P450 genes suggests that other triterpene hydroxylases belong to this family. In addition, substrate specificity with the obtained P450 hydroxylase indicates the two possible biosynthetic routes from triterpene-monool to triterpene-triol.  相似文献   
945.
Aurora kinase A (Aurora-A) is a cell cycle-associated serine–threonine kinase that is overexpressed by various types of cancer and is highly associated with poor prognosis. Since the expression of Aurora-A in normal tissues has been shown to be significantly lower as compared to tumor cells, this protein is being considered as a potential tumor-associated antigen for developing immunotherapies. The goal in the present study was to identify CD4 helper T lymphocyte (HTL) epitopes for Aurora-A for the design of T cell-based immunotherapies against Aurora-A-expressing tumors. Synthetic peptides corresponding to potential HTL epitopes were identified from Aurora-A and used to stimulate CD4 T lymphocytes in vitro to generate antigen-specific HTL clones that were evaluated for antigen specificity, MHC restriction and for their ability to interact with Aurora-A-expressing tumor cells. The results show that two peptides (Aurora-A161–175 and Aurora-A233–247) were effective in generating HTL responses that were restricted by more than one MHC class II allele (i.e., promiscuous responses). The CD4 HTL clones were able to directly recognize Aurora-A-expressing tumor cells in an antigen-specific and MHC class II-restricted manner and some of the clones displayed cytolytic activity toward Aurora-A + tumor cells. Both of these peptides were capable of stimulating in vitro T cell responses in patients with bladder cancer.  相似文献   
946.
Plinabulin (1, NPI-2358), a potent microtubule-targeting agent derived from the natural diketopiperazine ‘phenylahistin’ with a colchicine-like tubulin depolymerization activity, is an anticancer agent undergoing Phase II clinical trials in four countries including the United States. In order to understand the precise binding mode of plinabulin with tubulin, a new bioactive biotin-tagged photoaffinity probe 4 (KPU-244-B3) was designed and synthesized. Probe 4 showed significant binding affinity to tubulin in a binding assay, and selectively bound to tubulin in an HT-1080 cell lysate without photo-irradiation. In a tubulin photoaffinity labeling study, probe 4 labeled both α- and β-tubulin subunits and these interactions were competitively inhibited by plinabulin during photo-irradiation. These results suggest that plinabulin binds in the boundary region between α- and β-tubulin near the colchicine binding site, and not inside the colchicine binding cavity.  相似文献   
947.
Neuropathic pain is a serious chronic disorder caused by lesion or dysfunction in the nervous systems. Endogenous nociceptin/orphanin FQ (N/OFQ) peptide and N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor] are located in the central and peripheral nervous systems, the immune systems, and peripheral organs, and have a crucial role in the pain sensory system. Indeed, peripheral or intrathecal N/OFQ has displayed antinociceptive activities in neuropathic pain models, and inhibitory effects on pain-related neurotransmitter releases and on synaptic transmissions of C- and Aδ-fibers. In this study, design, synthesis, and structure–activity relationships of peripheral/spinal cord-targeting non-peptide NOP receptor agonist were investigated for the treatment of neuropathic pain, which resulted in the discovery of highly selective and potent novel NOP receptor full agonist {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol 1 (HPCOM) as systemically (subcutaneously) potent new-class analgesic. Thus, 1 demonstrates dose-dependent inhibitory effect against mechanical allodynia in chronic constriction injury-induced neuropathic pain model rats, robust metabolic stability and little hERG potassium ion channel binding affinity, with its unique and potentially safe profiles and mechanisms, which were distinctive from those of N/OFQ in terms of site-differential effects.  相似文献   
948.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   
949.
950.
Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号