全文获取类型
收费全文 | 1435篇 |
免费 | 160篇 |
专业分类
1595篇 |
出版年
2022年 | 24篇 |
2021年 | 51篇 |
2020年 | 29篇 |
2019年 | 23篇 |
2018年 | 30篇 |
2017年 | 17篇 |
2016年 | 34篇 |
2015年 | 83篇 |
2014年 | 66篇 |
2013年 | 76篇 |
2012年 | 111篇 |
2011年 | 105篇 |
2010年 | 55篇 |
2009年 | 49篇 |
2008年 | 67篇 |
2007年 | 97篇 |
2006年 | 54篇 |
2005年 | 53篇 |
2004年 | 55篇 |
2003年 | 51篇 |
2002年 | 63篇 |
2001年 | 21篇 |
2000年 | 24篇 |
1999年 | 27篇 |
1998年 | 16篇 |
1997年 | 11篇 |
1996年 | 7篇 |
1995年 | 9篇 |
1994年 | 8篇 |
1993年 | 5篇 |
1992年 | 13篇 |
1991年 | 17篇 |
1990年 | 19篇 |
1989年 | 16篇 |
1988年 | 16篇 |
1987年 | 14篇 |
1986年 | 12篇 |
1985年 | 13篇 |
1984年 | 16篇 |
1983年 | 13篇 |
1982年 | 9篇 |
1981年 | 9篇 |
1980年 | 15篇 |
1979年 | 9篇 |
1978年 | 10篇 |
1977年 | 5篇 |
1975年 | 8篇 |
1974年 | 8篇 |
1973年 | 8篇 |
1972年 | 6篇 |
排序方式: 共有1595条查询结果,搜索用时 15 毫秒
91.
Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67–72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil microbes, may therefore be a useful model system to investigate both microbial and viral ecology. 相似文献
92.
Faulkner E Barrett M Okor S Kieran P Casey E Paradisi F Engel P Glennon B 《Biotechnology progress》2006,22(3):889-897
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein. 相似文献
93.
Transcriptomic Profiling of Human Pluripotent Stem Cell-derived Retinal Pigment Epithelium over Time
94.
Muscle contractions evoke an immediate rise in blood flow. Distribution of this hyperemia within the capillary bed may be deterministic for muscle O(2) diffusing capacity and remains unresolved. We developed the exteriorized rat (n = 4) spinotrapezius muscle for evaluation of capillary hemodynamics before (rest), during, and immediately after (post) a bout of twitch contractions to resolve (second-by-second) alterations in red blood cell velocity (V(RBC)) and flux (f(RBC)). Contractions increased (all P < 0.05) capillary V(RBC) (rest: 270 +/- 62 microm/s; post: 428 +/- 47 microm/s), f(RBC) (rest: 22.4 +/- 5.5 cells/s; post: 44.3 +/- 5.5 cells/s), and hematocrit but not the percentage of capillaries supporting continuous RBC flow (rest: 84.0 +/- 0.7%; post: 89.5+/-1.4%; P > 0.05). V(RBC) peaked within the first one or two contractions, whereas f(RBC) increased to an initial short plateau (first 12-20 s) followed by a secondary rise to steady state. Hemodynamic temporal profiles were such that capillary hematocrit tended to decrease rather than increase over the first approximately 15 s of contractions. We conclude that contraction-induced alterations in capillary RBC flux and distribution augment both convective and diffusive mechanisms for blood-myocyte O(2) transfer. However, across the first 10-15 s of contractions, the immediate and precipitous rise in V(RBC) compared with the biphasic and prolonged increase of f(RBC) may act to lower O(2) diffusing capacity by not only reducing capillary transit time but by delaying the increase in the instantaneous RBC-to-capillary surface contact thought crucial for blood-myocyte O(2) flux. 相似文献
95.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well. 相似文献
96.
The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective 下载免费PDF全文
Kaminker JS Bergman CM Kronmiller B Carlson J Svirskas R Patel S Frise E Wheeler DA Lewis SE Rubin GM Ashburner M Celniker SE 《Genome biology》2002,3(12):research0084.1-842
Background
Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species.Results
We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes.Conclusions
This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses. 相似文献97.
Casey L. Pell Melanie J. Williams Eileen M. Dunne Barbara D. Porter Catherine Satzke 《PloS one》2013,8(8)
Bacterial isolates are often transported between laboratories for research and diagnostic purposes. Silica desiccant packets (SDPs), which are inexpensive and do not require freezing, were evaluated for storage and recovery of bacterial isolates. Conditions such as inoculum size, swab type and temperature of storage were investigated using ten Streptococcus pneumoniae isolates. The optimized protocol was then tested using 49 additional S. pneumoniae isolates representing 40 serogroups. Overall, S. pneumoniae growth was considered satisfactory (>100 colony forming units) for 98/109 (89.9%) and 20/20 (100%) swabs after 14 days at room temperature or 28 days at 4° C, respectively. Storage in SDPs did not impact on the ability of S. pneumoniae isolates to be subsequently serotyped. When the survival of nine other clinically relevant bacterial species was tested, seven were viable after 28 days at room temperature, the exceptions being Neisseria gonorrhoeae and Haemophilus influenzae. SDPs are suitable for transport and short-term storage of bacterial species including S. pneumoniae. 相似文献
98.
Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway
Hsu Sf O'Connell PJ Klyachko VA Badminton MN Thomson AW Jackson MB Clapham DE Ahern GP 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(10):6126-6133
Although Ca(2+)-signaling processes are thought to underlie many dendritic cell (DC) functions, the Ca(2+) entry pathways are unknown. Therefore, we investigated Ca(2+)-signaling in mouse myeloid DC using Ca(2+) imaging and electrophysiological techniques. Neither Ca(2+) currents nor changes in intracellular Ca(2+) were detected following membrane depolarization, ruling out the presence of functional voltage-dependent Ca(2+) channels. ATP, a purinergic receptor ligand, and 1-4 dihydropyridines, previously suggested to activate a plasma membrane Ca(2+) channel in human myeloid DC, both elicited Ca(2+) rises in murine DC. However, in this study these responses were found to be due to mobilization from intracellular stores rather than by Ca(2+) entry. In contrast, Ca(2+) influx was activated by depletion of intracellular Ca(2+) stores with thapsigargin, or inositol trisphosphate. This Ca(2+) influx was enhanced by membrane hyperpolarization, inhibited by SKF 96365, and exhibited a cation permeability similar to the Ca(2+) release-activated Ca(2+) channel (CRAC) found in T lymphocytes. Furthermore, ATP, a putative DC chemotactic and maturation factor, induced a delayed Ca(2+) entry with a voltage dependence similar to CRAC. Moreover, the level of phenotypic DC maturation was correlated with the extracellular Ca(2+) concentration and enhanced by thapsigargin treatment. These results suggest that CRAC is a major pathway for Ca(2+) entry in mouse myeloid DC and support the proposal that CRAC participates in DC maturation and migration. 相似文献
99.
The apicomplexan parasite Toxoplasma gondii is able to suppress nitric oxide production in activated macrophages. A screen of over 6000 T. gondii insertional mutants identified two clones, which were consistently unable to suppress nitric oxide production from activated macrophages. One strain, called 89B7, grew at the same rate as wild‐type parasites in naïve macrophages, but unlike wild type, the mutant was degraded in activated macrophages. This degradation was marked by a reduction in the number of parasites within vacuoles over time, the loss of GRA4 and SAG1 protein staining by immunofluorescence assay, and the vesiculation and breakdown of the internal parasite ultrastructure by electron microscopy. The mutagenesis plasmid in the 89B7 clone disrupts the promoter of a 3.4 kb mRNA that encodes a predicted 68 kDa protein with a cleavable signal peptide and a patatin‐like phospholipase domain. Genetic complementation with the genomic locus of this patatin‐like protein restores the parasites ability to suppress nitric oxide and replicate in activated macrophages. A haemagglutinin‐tagged version of this patatin‐like protein shows punctate localization into atypical T. gondii structures within the parasite. This is the first study that defines a specific gene product that is needed for parasite survival in activated but not naïve macrophages. 相似文献
100.
Maier TM Pechous R Casey M Zahrt TC Frank DW 《Applied and environmental microbiology》2006,72(3):1878-1885
Francisella tularensis is the intracellular pathogen that causes human tularemia. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of entry. We report the development of a Himar1-based random mutagenesis system for F. tularensis (HimarFT). In vivo mutagenesis of F. tularensis live vaccine strain (LVS) with HimarFT occurs at high efficiency. Approximately 12 to 15% of cells transformed with the delivery plasmid result in transposon insertion into the genome. Results from Southern blot analysis of 33 random isolates suggest that single insertions occurred, accompanied by the loss of the plasmid vehicle in most cases. Nucleotide sequence analysis of rescued genomic DNA with HimarFT indicates that the orientation of integration was unbiased and that insertions occurred in open reading frames and intergenic and repetitive regions of the chromosome. To determine the utility of the system, transposon mutagenesis was performed, followed by a screen for growth on Chamberlain's chemically defined medium (CDM) to isolate auxotrophic mutants. Several mutants were isolated that grew on complex but not on the CDM. We genetically complemented two of the mutants for growth on CDM with a newly constructed plasmid containing a nourseothricin resistance marker. In addition, uracil or aromatic amino acid supplementation of CDM supported growth of isolates with insertions in pyrD, carA, or aroE1 supporting the functional assignment of genes within each biosynthetic pathway. A mutant containing an insertion in aroE1 demonstrated delayed replication in macrophages and was restored to the parental growth phenotype when provided with the appropriate plasmid in trans. Our results suggest that a comprehensive library of mutants can be generated in F. tularensis LVS, providing an additional genetic tool to identify virulence determinants required for survival within the host. 相似文献