首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   19篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   19篇
  2020年   23篇
  2019年   34篇
  2018年   25篇
  2017年   11篇
  2016年   20篇
  2015年   13篇
  2014年   10篇
  2013年   14篇
  2012年   14篇
  2011年   11篇
  2010年   4篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  1998年   1篇
  1970年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
91.
Candida antarctica lipase B (CALB) belongs to psychrophilic lipases which hydrolyze carboxyl ester bonds at low temperatures. There have been some features reported about cold-activity of the enzyme through experimental methods, whereas there is no detailed information on its mechanism of action at molecular level. Herein, a comparative molecular dynamics simulation and essential dynamics analysis have been carried out at three temperatures (5, 35 and 50 °C) to trace the dominant factors in the psychrophilic properties of CALB under cold condition. The results clearly describe the effect of temperature on CALB with meaningful differences in the flexibility of the lid region (α5 helix), covering residues 141-147. Open- closed conformations have been obtained from different sets of long-term simulations (60 ns) at 5 °C gave two reproducible distinct forms of CALB. The starting open conformation became closed immediately at 35 and 50 °C during 60 ns of simulation, while a sequential open-closed form was observed at 5 °C. These structural alterations were resulted from α5 helical movements, where the closed conformation of active site cleft was formed by displacement of both helix and its side chains. Analysis of normal mode showed concerted motions that are involved in the movement of both α5 and α10 helices. It is suggested that the functional motions needed for lypolytic activity of CALB is constructed from short-range movement of α5, accompanied by long-range movement of the domains connected to the lid region.  相似文献   
92.
Echinococcus granulosus sensu stricto is a cosmopolitan parasite causing cystic echinococcosis in humans and livestock. Recent molecular phylogeographic studies suggested the rapid dispersal of the parasite by the anthropogenic movement of domestic animal hosts. In the present study, genetic polymorphism of E. granulosus s. s. in the Middle East, where the domestication started, was investigated to validate the dispersal history of the parasite. Thirty-five and 26 hydatid cysts were collected from Iran and Jordan, respectively, and mitochondrial cytochrome c oxidase subunit I (cox1) gene was sequenced. Chinese and Peruvian specimens were also analyzed for comparison. Haplotype network analysis demonstrated the existence of a common haplotype EG01 in all populations. Although EG01 and its one-step neighbors were the majority in all regions, most of the neighboring haplotypes were unique in each locality. Haplotype diversity was high but nucleotide diversity was low in Iran, Jordan and China. Both diversities were lowest and only a few haplotypes were found in Peru. Neutrality indices were significantly negative in Iran, Jordan and China, and positive but not significant in Peru. Pairwise fixation index was significant for all pairwise comparisons, indicating genetic differentiation among populations. These results suggest a evolutionary history of E. granulosus s. s. in which a genetic subgroup including EG01 was selected at the dawn of domestication, and then it was rapidly dispersed worldwide through the diffusion of stock raising. To approach the origin of the ancestral strain, extensive sampling is needed in many endemic regions. To evaluate the hypothetical evolutionary scenario, further study is needed to analyze specimens from diverse host species in wider regions.  相似文献   
93.
94.
The unique morphology of anisotropic rod-shaped gold nanostructures has offered new prospects for biomedical and biosensing applications. This study investigates the interaction of two types of rod-shaped nanostructures, gold nanorods and gold nanorices with lysozyme as a model protein, comparing the probable structural, activity and kinetic stability alterations. Circular dichroism spectropolarimeter revealed that lysozyme retains high fraction of its native conformation in the presence of both nanostructures, with a slight increase in the helical and beta content. Upon the protein adsorption on both types of nanorods, kinetic studies showed maintenance of enzymatic activity, together with increase in the enzymatic affinity and kinetic stability at high temperature. Comparatively, gold nanorice induced better effect on the activity and stability of enzyme than that of gold nanorod. This study might open new insight into potential applications of gold nanorods as nanocarriers for genes and drugs; provided that the toxicological aspect of cationic surfactant-coated nanostructure is taken into consideration.  相似文献   
95.
96.

Background

RNA interference (RNAi) is a powerful approach in functional genomics to selectively silence messenger mRNA (mRNA) expression and can be employed to rapidly develop potential novel drugs against a complex disease like cancer. However, naked siRNA being anionic is unable to cross the anionic cell membrane through passive diffusion and therefore, delivery of siRNA remains a major hurdle to overcome before the potential of siRNA technology can fully be exploited in cancer. pH-sensitive carbonate apatite has recently been developed as an efficient tool to deliver siRNA into the mammalian cells by virtue of its high affinity interaction with the siRNA and the desirable size distribution of the resulting siRNA-apatite complex for effective cellular endocytosis. Moreover, internalized siRNA was found to escape from the endosomes in a time-dependent manner and efficiently silence gene expression.

Results

Here we show that carbonate apatite-mediated delivery of siRNA against PLC-gamma-2 (PLCG2) and calmodulin 1 (CALM1) genes has led to the sensitization of a human cervical cancer cell line to doxorubicin- and paclitaxel depending on the dosage of the individual drug whereas no such enhancement in cell death was observed with cisplatin irrespective of the dosage following intracellular delivery of the siRNAs.

Conclusion

Thus, PLCG2 and CALM1 genes are two potential targets for gene knockdown in doxorubicin and paclitaxel-based chemotherapy of cervical cancer.  相似文献   
97.
Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.  相似文献   
98.
The proton‐driven flagellar motor of Salmonella enterica can accommodate a dozen MotA/B stators in a load‐dependent manner. The C‐terminal periplasmic domain of MotB acts as a structural switch to regulate the number of active stators in the motor in response to load change. The cytoplasmic loop termed MotAC is responsible for the interaction with a rotor protein, FliG. Here, to test if MotAC is responsible for stator assembly around the rotor in a load‐dependent manner, we analyzed the effect of MotAC mutations, M76V, L78W, Y83C, Y83H, I126F, R131L, A145E and E155K, on motor performance over a wide range of external load. All these MotAC mutations reduced the maximum speed of the motor near zero load, suggesting that they reduce the rate of conformational dynamics of MotAC coupled with proton translocation through the MotA/B proton channel. Dissociation of the stators from the rotor by decrease in the load was facilitated by the M76V, Y83H and A145E mutations compared to the wild‐type motor. The E155K mutation reduced the number of active stators in the motor from 10 to 6 under extremely high load. We propose that MotAC is responsible for load‐dependent assembly and disassembly dynamics of the MotA/B stator units.  相似文献   
99.
Production of recombinant pharmaceutical proteins has made a great contribution to modern biotechnology. At present, quick advances in protein expression lead to the enhancement of product quantity and quality as well as reduction in timescale processing. In the current study, we assessed the expression level of recombinant human follicle-stimulating hormone (rhFSH) in adherent and suspension Chinese hamster ovary (CHO) cell lines by cultivation in serum-containing and chemically defined, protein-free media. The expression cassette entailing FSH subunits was transfected to CHO/dhfr- and CHO DG44 cell lines, and gene amplification was achieved using dihydrofolate reductase (DHFR)/methotrexate (MTX) system. Afterward, the expression level of rhFSH was studied using real-time PCR, Western blotting and ELISA. Our achievements revealed that stepwise increase in MTX [up to 2000 nano-molar (nM)] leads to boost the expression level of rhFSH mRNA in both cell lines, although DG44 have better results, as mRNA expression level reached 124.8- and 168.3-fold in alpha and beta subunits, respectively. DG44 cells have also the best protein production in 2000 nM MTX, which reached 1.7-fold in comparison with that of the mock group. According to the above results and many advantages of protein-free media, DG44 is preferable cell line for future steps.  相似文献   
100.
Due to the growth of diabetic mellitus (DM) and diabetic nephropathy as a significant complication for diabetic patients, study on effective treatment with fewer side effects has been fascinated. In this study for the first time carvedilol effects on both function and structure of kidney in diabetic nephropathy treatment were evaluated. Diabetes was induced by injection of streptozotocin (STZ) intravenously in rats and three groups including control, diabetic, and treatment with carvedilol were considered. Biochemical parameters such as, blood glucose level, BUN, creatinine, uric acid, Na+, K+ was determined. Results showed that glucose (516 to 291 mg/dl), BUN (42 to 21.67 mg/dl), creatinine (0.75 to 0.6 mg/dl), uric acid (4.45 to 1.36 mg/dl), and K+ (7.433 to 5.433 mEq/l) level reduced. Decrease in glucose, BUN, creatinine, uric acid, and K+ and increase in Na+ level (138 to 146.33 mEq/l) confirmed therapeutic effect of carvedilol. Furthermore, the histopathological study was done for each group. Histopathological results confirmed the data obtained by biochemical parameters. For further investigation, SPECT imaging with 99mTc-DMSA, which is a gold standard in diabetic nephropathy detection, was done. SPECT imaging showed that accumulation of 99mTc-DMSA was increased in treated group (5 to 25 kcpm) which means the improvement in renal structure in the treated group compare to the diabetic group (5 kcpm). Finally, obtained results confirmed our hypothesis that carvedilol had a therapeutic effect on diabetic nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号