首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   60篇
  国内免费   3篇
  2023年   15篇
  2022年   18篇
  2021年   56篇
  2020年   48篇
  2019年   84篇
  2018年   46篇
  2017年   36篇
  2016年   48篇
  2015年   51篇
  2014年   43篇
  2013年   86篇
  2012年   86篇
  2011年   59篇
  2010年   48篇
  2009年   30篇
  2008年   31篇
  2007年   46篇
  2006年   35篇
  2005年   28篇
  2004年   23篇
  2003年   14篇
  2002年   15篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1961年   1篇
排序方式: 共有1044条查询结果,搜索用时 718 毫秒
61.
Predator-prey theory began with aspatial models that assumed organisms interacted as if they were "well-mixed" particles that obey the laws of mass action, but it has become clear that both the spatial and individual nature of many organisms can change how the dynamics of such systems function. Here I examine how localized consumption of prey by predators changes the dynamics of predator-prey systems; I use an individual-based simulation of the Rosenzweig-MacArthur model in implicit space and its mean-field approximation. In combination with limited movement, localized consumption makes the predator-prey dynamics more stable than the comparable "well-mixed" Rosenzweig-MacArthur model. Using a spatial correlation, one can directly compare a simplified version of the individual-based model with the Rosenzweig-MacArthur model. While this comparison allows the changes in the dynamics to be captured by the "well-mixed" Rosenzweig-MacArthur model, the parameters of the functional response are now dependent on the movement parameters, and so the functional response must be estimated statistically from the dynamics of the individual-based model. Yet this implies that aspatial models may work in a scale-specific fashion for spatial systems. Unlike many recent spatial models, the localized consumption and limited movement in the model presented here cannot produce coherent spatial patterns and do not depend on a patchy structure, as found in metapopulation models. Instead, the individual nature of the interactions creates a diffusion-limited reaction, which appears closer to a form of ephemeral refuge.  相似文献   
62.
Mocci F  Saba G 《Biopolymers》2003,68(4):471-485
Molecular dynamics simulations have been employed to probe the sequence-specific binding of sodium ions to the minor groove of B-DNA of three A. T-rich oligomers having identical compositions but different orders of the base pairs: C(AT)(4)G, CA(4)T(4)G, and CT(4)A(4)G. Recent experimental investigations, either in crystals or in solution, have shown that monovalent cations bind to DNA in a sequence-specific mode, preferentially in the narrow minor groove regions of uninterrupted sequences of four or more adenines (A-tracts), replacing a water molecule of the ordered hydration structure, the hydration spine. Following this evidence, it has been hypothesized that in A-tracts these events may be responsible for structural peculiarities such as a narrow minor groove and a curvature of the helix axis. The present simulations confirm a sequence specificity of the binding of sodium ions: Na(+) intrusions in the first layer of hydration of the minor groove, with long residence times, up to approximately 3 ns, are observed only in the minor groove of A-tracts but not in the alternating sequence. The effects of these intrusions on the structure of DNA depend on the ion coordination: when the ion replaces a water molecule of the spine, the minor groove becomes narrower. Ion intrusions may also disrupt the hydration spine modifying the oligomer structure to a large extent. However, in no case intrusions were observed to locally bend the axis toward the minor groove. The simulations also show that ions may reside for long time periods in the second layer of hydration, particularly in the wider regions of the groove, often leading to an opening of the groove.  相似文献   
63.
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.  相似文献   
64.
Proteomic analysis of rice leaves during drought stress and recovery   总被引:6,自引:0,他引:6  
Three-week old plants of rice (Oryza sativa L. cv CT9993 and cv IR62266) developed gradual water stress over 23 days of transpiration without watering, during which period the mid-day leaf water potential declined to approximately -2.4 MPa, compared with approximately -1.0 MPa in well-watered controls. More than 1000 protein spots that were detected in leaf extracts by proteomic analysis showed reproducible abundance within replications. Of these proteins, 42 spots showed a significant change in abundance under stress, with 27 of them exhibiting a different response pattern in the two cultivars. However, only one protein (chloroplast Cu-Zn superoxide dismutase) changed significantly in opposite directions in the two cultivars in response to drought. The most common difference was for proteins to be up-regulated by drought in CT9993 and unaffected in IR62266; or down-regulated by drought in IR62266 and unaffected in CT9993. By 10 days after rewatering, all proteins had returned completely or largely to the abundance of the well-watered control. Mass spectrometry helped to identify 16 of the drought-responsive proteins, including an actin depolymerizing factor, which was one of three proteins detectable under stress in both cultivars but undetectable in well-watered plants or in plants 10 days after rewatering. The most abundant protein up-regulated by drought in CT9993 and IR62266 was identified only after cloning of the corresponding cDNA. It was found to be an S-like RNase homologue but it lacked the two active site histidines required for RNase activity. Four novel drought-responsive mechanisms were revealed by this work: up-regulation of S-like RNase homologue, actin depolymerizing factor and rubisco activase, and down-regulation of isoflavone reductase-like protein.  相似文献   
65.
In this study aphid-plant association and its effect on host preference of parasitic Allothrombium pulvinum larvae was examined with multiple-choice tests. Host species selection, host size selection and superparasitism with mite larvae were studied with two-choice tests. Three aphid species were used: Macrosiphum rosae, Aphis gossypii and Hyalopterus amygdali. In multiple-choice tests, larvae of A. pulvinum showed no significant preference for any aphid-plant association when given M. rosae on rose, A. gossypii on cucumber and H. amygdali on apricot simultaneously. Two-choice tests showed that larval mites preferred H. amygdali to A. gossypii, but had no preference when offered a choice between A. gossypii and M. rosae or between H. amygdali and M. rosae. In host size selection and superparasitism tests, significantly more mites selected the larger host (M. rosae). Furthermore, parasitised H. amygdali were preferred to unparasitised ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
66.
The therapeutic efficacy of protegrin peptide IB-367 was investigated in three rat models of septic shock: (i) rats injected intraperitoneally with 1mg Escherichia coli 0111:B4 lipopolysaccharide, (ii) rats given an intraperitoneal injection of 2 X 10(10) CFU of E. coli ATCC 25922, and (iii) rats in which intra-abdominal sepsis was induced via cecal ligation and puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1mg/kg of IB-367, 60mg/kg piperacillin and 1mg/kg of IB-367 plus 60mg/kg piperacillin. The peptide demonstrated lower level of antimicrobial activity than piperacillin, nevertheless it exhibited the dual properties of antimicrobial and antiendotoxin agent. Finally IB-367 and piperacillin association showed to be the most effective therapeutic approach.  相似文献   
67.
Sphingosine-1-phosphate is a sphingolipid metabolite that regulates cell proliferation, migration and apoptosis through specific signaling pathways. Sphingosine-1-phosphate lyase catalyzes the conversion of sphingosine-1-phosphate to ethanolamine phosphate and a fatty aldehyde. We report the cloning of the Drosophila sphingosine-1-phosphate lyase gene (Sply) and demonstrate its importance for adult muscle development and integrity, reproduction and larval viability. Sply expression is temporally regulated, with onset of expression during mid-embryogenesis. Sply null mutants accumulate both phosphorylated and unphosphorylated sphingoid bases and exhibit semi-lethality, increased apoptosis in developing embryos, diminished egg-laying, and gross pattern abnormalities in dorsal longitudinal flight muscles. These defects are corrected by restoring Sply expression or by introduction of a suppressor mutation that diminishes sphingolipid synthesis and accumulation of sphingolipid intermediates. This is the first demonstration of novel and complex developmental pathologies directly linked to a disruption of sphingolipid catabolism in metazoans.  相似文献   
68.
Exposure of lung endothelial monolayers to tumor necrosis factor (TNF)-alpha causes a rearrangement of the fibrillar fibronectin (FN) extracellular matrix and an increase in protein permeability. Using calf pulmonary artery endothelial cell layers, we determined whether these changes were mediated by FN multimerization due to enhanced transglutaminase activity after TNF-alpha (200 U/ml) for 18 h. Western blot analysis indicated that TNF-alpha decreased the amount of monomeric FN detected under reducing conditions. Analysis of (125)I-FN incorporation into the extracellular matrix confirmed a twofold increase in high molecular mass (HMW) FN multimers stable under reducing conditions (P < 0.05). Enhanced formation of such HMW FN multimers was associated with increased cell surface transglutaminase activity (P < 0.05). Calf pulmonary artery endothelial cells pretreated with TNF-alpha also formed nonreducible HMW multimers of FN when layered on surfaces precoated with FN. Inhibitors of transglutaminase blocked the TNF-alpha-induced formation of nonreducible HMW multimers of FN but did not prevent either disruption of the FN matrix or the increase in monolayer permeability. Thus increased cell surface transglutaminase after TNF-alpha exposure initiates the enhanced formation of nonreducible HMW FN multimers but did not cause either the disruption of the FN matrix or the increase in endothelial monolayer permeability.  相似文献   
69.
70.
Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号