首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   26篇
  国内免费   1篇
  2023年   3篇
  2022年   17篇
  2021年   19篇
  2020年   17篇
  2019年   37篇
  2018年   19篇
  2017年   17篇
  2016年   23篇
  2015年   21篇
  2014年   19篇
  2013年   26篇
  2012年   21篇
  2011年   23篇
  2010年   17篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
排序方式: 共有350条查询结果,搜索用时 140 毫秒
281.
S Ramadhani  SR Mousavi  M Talebi 《Gene》2012,498(2):177-182
We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.  相似文献   
282.
The finite element (FE) method can accurately calculate tissue deformation. However, its low speed renders it ineffective for many biomedical applications involving real-time data processing. To accelerate FE analysis, we introduce a novel tissue mechanics simulation technique. This technique is suitable for real-time estimation of tissue deformation of specific organs, which is required in computer-aided diagnostic or therapeutic procedures. In this method, principal component analysis is used to describe each organ shape and its corresponding FE field for a pool of patients by a small number of weight factors. A mapping function is developed to relate the parameters of organ shape to their FE field counterpart. We show that irrespective of the complexity of the tissue's constitutive law or its loading conditions, the proposed technique is highly accurate and fast in estimating the FE field. Average deformation errors of less than 2% demonstrate the accuracy of the proposed technique.  相似文献   
283.
284.
A central composite rotatable design (CCRD) was used to evaluate the effects of walnut oil (WO, 3-6%, w/w) and gum arabic (GA, 5-10%, w/w) on the average droplet size (D(32)), specific surface area (SSA), polydispersity index (span), apparent viscosity, interfacial tension and opacity of walnut-beverage emulsions. The response surface methodology (RSM) showed that the significant second-order polynomial regression equations with high R(2) (>0.95) were successfully fitted for all responses as function of independent variables. The linear effect of WO had a significant term in all reduced models. The overall optimum region was found to be at the combined level of 10% (w/w) GA content and 5.84% (w/w) WO concentration. At this optimum point, D(32), SSA, span, apparent viscosity, interfacial tension and opacity of emulsions were 0.609 μm, 8.236 m(2)/ml, 0.886, 1.336 Pa s, 51.37 mN/m and 0.810, respectively. No significant (p>0.05) difference was found between the actual values and predicted values. Moreover, principal component analysis (PCA), conducted via PCA variable loadings and cluster dendrogram was able to discriminate the emulsions with different formulations into separate classes.  相似文献   
285.
Anaerobic oxidation of volatile fatty acids (VFAs) as the key intermediates is restricted thermodynamically. Presently, enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in an upflow anaerobic sludge bed reactor fed with acetic, propionic, and butyric acids at maximum concentrations of 5.0, 3.0, and 4.0 g/L, respectively. Interactive effects of propionate, butyrate and acetate were analyzed. Hydraulic retention time (HRT) and acetate oxidizing syntrophs and methanogen (hydrogenotrophs) to syntrophic bacteria (propionate- and butyrate-oxidizing bacteria) population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. M/A did not affect the size distribution and had little effect on extracellular polymer contents of the granules. Granular sludge with close spatial microbial proximity enhanced syntrophic degradation of VFAs compared to other cultures, such as suspended cultures. Optimum conditions were found to be propionate = 1.93 g/L, butyrate = 2.15 g/L, acetate = 2.50 g/L, HRT = 22 h, and M/A = 2.5 corresponding to maximum VFA removal and biogas production rate. Results of verification experiments and predicted values from fitted correlations were in close agreement at the 95% confidence interval. Granules seemed to be smaller particles and less stable in construction with an irregular fractured surface compared to the original granules.  相似文献   
286.
287.
The present study describes the length–weight relationships (LWRs) and condition factors (K) of Alburnoides samiii and Ponticola iranicus in the Sefidroud River from the southern Caspian Sea basin, September 2013 to August 2014. This study presents the first known reference in the FishBase database regarding the LWRs and condition factors for these two indigenous species.  相似文献   
288.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   
289.
This study investigated the effects of various culture parameters (carbon sources, temperature, initial pH of culture, NaCl concentration, and light) on the growth and canthaxanthin production by Dietzia natronolimnaea HS-1. The results showed that the most effective carbon source for growth and canthaxantin production was glucose, and the best pH and temperature were 7 and 31 degrees C, respectively. In addition, the biomass and canthaxanthin production increased in a medium without NaCl and in the presence of light. Under the optimized conditions, the maximum biomass, total carotenoid, and canthaxanthin production were 6.12 +/- 0.21 g/l, 4.51 +/- 0.20 mg/l, and 4.28 +/- 0.15 mg/l, respectively, in an Erlenmeyer flask system, yet increased to 7.25 g/l, 5.48 mg/l, and 5.29 mg/l, respectively, in a batch fermenter system.  相似文献   
290.

Background

Dendrimers are highly branched synthetic macromolecules with a globular shape. They have been successfully used for generation of nanospheres at mild conditions via biomimetic silicification. Encapsulation of enzyme molecules within these nanospheres during their synthesis is a promising method for rapid and efficient entrapment of several enzymes. However, encapsulation of proteolytic enzymes has been rarely done via biomimetic silicification. As well, the operational stability of encapsulated enzyme has not been systematically reported.

Methods

A proteolytic enzyme, either α-Chymotrypsin or a fungal protease from Aspergilus Oryzea was encapsulated along with iron oxide nanoparticles within particles yielded via biomimetic silicification of different generations of polyamidoamine (PAMAM) dendrimers. Stability of encapsulated enzyme was compared to that of free enzyme during storage at room temperature. As well, their thermal and ultrasonic stabilities were measured. Scanning electron microscopy, transmission electron microscopy and optical microscopy were used to investigate the morphology of nanospheres.

Results

Determination of encapsulation efficiency revealed that ∼ 85% of fungal protease with concentration 1.4 mg mL− 1 stock solution was immobilized within particles yielded by generation 0. Based on microscopic images the generated particles interconnected with each other and had spherical morphologies independent of generation. Kinetic analysis of encapsulated fungal protease demonstrated that Mechaelis-Menten constant (Km) slightly increased.

Conclusion

PAMAM dendrimer generation 0 could be effectively used for rapid encapsulation of a fungal protease from Aspegilus Oryzae.

General significance

Encapsulation significantly enhances the thermal and ultrasonic stabilities of enzymes, suggesting a range of diverse applications for them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号