首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   20篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   10篇
  2019年   22篇
  2018年   20篇
  2017年   8篇
  2016年   13篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
61.
Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.  相似文献   
62.
External ear reconstruction for congenital deformity such as microtia or following trauma remains one of the greatest challenges for reconstructive plastic surgeons. The problems faced in reconstructing the intricate ear framework are highly complex. A durable, inert material that is resistant to scar contracture is required. To date, no material, autologous or prosthetic, is available that perfectly mimics the shapely elastic cartilage found in the ear. Current procedure involves autologous costal cartilage that is sculpted to create a framework for the overlying soft tissues. However, this is associated with donor-site morbidity, and few surgeons worldwide are skilled in the techniques required to obtain excellent results. Various alloplastic materials have therefore been used as a framework. However, a degree of immunogenicity and infection and extrusion are inevitable, and results are often disappointing. Tissue-engineered cartilage is an alternative approach but, despite significant progress in this area, many problems remain. These need to be addressed before routine clinical application will become possible. The current tissue-engineered options are fragile and inflexible. The next generation of auricular cartilage engineering is promising, with smart materials to enhance cell growth and integration, and the application of stem cells in a clinical setting. More recently, the authors' team designed the world's first entirely synthetic trachea composed of a novel nanocomposite material seeded with the patient's own stem cells. This was successfully transplanted in a patient at the Karolinska Hospital in Sweden and may translate into a tissue-engineered auricle in the future.  相似文献   
63.
64.
Scale and otolith morphology and morphometry of Indian oil sardine Sardinella longiceps (Clupeidae) were investigated and described using light and scanning electron microscopy from eight different body regions for scales and the right and left otoliths. Scales of the Indian oil sardine show general characteristics of the other studied clupeids sand that are easily distinguishable from other fish groups, by having striae in the posterior field. The studied cycloid scales of Slongiceps were classified into three types based on the overall shape including circular (e.g. true circular and cordate), pentagonal and quadrilateral in the different body regions. The circular shape was the most common shape (87.5%), while the quadrilateral and pentagonal forms constituted 6.25% each. The results also showed that the relative scale size (J-index) plays a desirable contribution in separating the examined populations. The results showed that the mean (or relative) scale size for all the eight regions in the Oman Sea population is larger than the Arabian Sea population. Also, another scale variable, the scale shape index (Si index), demonstrated variation (a mean of 0.86 to 1.1) in different regions of both populations from the Oman and Arabian Seas. Interestingly, here, we found that scale characters of Slongiceps not only differ from its other congeneric species, but also differ in the populations from both sides of the Oman Sea (Iran and Oman) and the Arabian Sea. It shows a positive signal for the presence of different taxonomic and management unit in the Oman and Arabian Seas. The idea should be approved by using integrated molecular and morphological traits. The otolith morphology of Slongiceps from the Oman and Arabian Seas was more conservative than the scales, which can be due to its function actin primarily as a balance organ and also enhancing hearing. The overall shape of Slongiceps otolith was lanceolate, with an elongated morphology and a well-developed rostrum, an ostial sulcus acusticus that opens to the anterior/ dorsal margin. These morphological characters are also found in the Iranian population of Slongiceps. However, otolith displayed variation in biometric parameters among two populations and left and right otoliths and the RRL parameter were important characters to discriminate the Oman and Arabian Sea populations. Thus, the structural/biometrical variability of the otoliths may be used for population distinctness, especially in water bodies with various environmental factors, and the otolith has turned out to be a useful tool to track the life history of teleostean fishes in environments with physicochemical gradients.  相似文献   
65.
The optical light microscopy and scanning electron microscopy techniques have proven to play a key and noteworthy role in the advancement of morphological studies in general, and in investigating fish scale morphology in particular. These techniques have illustrated several hidden architectural structures in scales that contribute effectively to fish identification and classification. The scale morphological and topological characters such as type, size, shape, lateral surface, focus position, circuli appearance, radii type, lepidonts, and posterior and anterior margin shapes were obtained using macro- and microscopic analysis in six body regions for three size classes of Garra sharq, a cyprinid endemic fish of the Arabian Peninsula. The general scale type in the studied G. sharq species was a basal elasmoid cycloid and a sectioned type. As a protective structure, the scales display several specific characteristics including firm attachment to the fish body, overlapping, and thin structure with a high surface area and high strength. These characteristics improve scale resistance to penetration, increase protection against mechanical injury and microbial infection, enhance scale flexibility, reduce fish weight (reduce friction drag), and increase scale transparency. The scales demonstrate plasticity in focus shape, size, and position in the six fish body parts and fish size groups. The examined scales displayed narrow or wide grooves (radii) in three types including primary, secondary, and tertiary present in all four scale fields (anterior, posterior, and laterals), thus a tetra-sectioned type that is almost specific to the genus Garra. This characteristic also increases scale flexibility. The rostral margin of scales was characterized by the presence of waved and striate types. The lepidont shape and size varied being blunt, flat, pointed, tiny, sharp, short, and long. Some of these scale characters and their morphologies could be used as an alternative tool for identification, classification, and phylogenetic interpretation among the different freshwater fish species and genera.  相似文献   
66.
Cobalt [(OH)2-salophen] (N,N′-bis(4-hydroxysalicylidene)phenylene-1,2-diamine) complex was covalently grafted on the chemical modification of multi-wall carbon nanotubes (MWNTs); [Co((OH)2-salophen)]@MWNTs]. The as-products were characterized by spectroscopy (FT-IR, Raman, and UV–Vis), TGA, and TEM. The cobalt(II) Schiff-base complex covalently anchored on modified MWNTs was characterized by different techniques. The catalytic activity of the novel nanotubes based materials was tested in the epoxidation of cyclohexene in the iso-butyraldehyde/air system using acetonitrile as solvent and very high conversion was obtained. The experimental results indicated very good catalytic activity and selectivity in the epoxidation of cyclohexene. Repeated runs of the catalysts were carried out three times and the results indicated that the catalyst was stable for the epoxidation of cyclohexene.  相似文献   
67.
Length–weight parameters were estimated for 37 freshwater fish species of Iran belonging to seven families. Significant length–weight relationships with high correlation coefficients were found for all species.  相似文献   
68.
69.
Recent advances in genome research and RNA interference (RNAi) technology have accelerated the adoption of genome-wide experimental approaches for determining gene function in the model organism Caenorhabditis elegans. Despite recent successes, the application of RNAi is limited when gene knockdown causes complex phenotypes or embryonic lethality. Recently, the high-throughput pWormgate cloning system has been introduced as a tool to efficiently generate heat-shock-inducible hairpin RNA constructs using the Gateway recombination technology. We have modified pWormgate into a versatile hairpin cloning plasmid, pWormgatePro, which facilitates temporally and spatially inducible hairpin RNAi using constitutively active, tissue-specific promoters. To demonstrate its utility we knocked down unc-22 in body wall muscles as well as the axon guidance gene unc-5 in the nervous system indicating that promoter-driven hairpins can overcome the neuronal resistance to RNAi. Using pWormgatePro we also show that RNAi in the nervous system of C. elegans is non-autonomous and that spreading of the RNAi signal from neurons to muscle is substantially reduced but not abolished in spreading-defective sid-1 mutant animals. Our findings illustrate the effectiveness of pWormgatePro for gene silencing in muscle cells and neurons and bring forward the possibility of applying tissue-specific RNAi on a genome-wide scale.  相似文献   
70.
Highly upregulated in liver cancer (HULC) was initially recognized during the screening of a hepatocellular carcinoma (HCC)-specific gene library. Further studies demonstrated its aberrant upregulation in several other tumor types. The oncogenic roles of this long noncoding RNA (lncRNA) have been verified through expression studies as well as functional studies. Moreover, the results of knockdown experiments have indicated diminished carcinogenic effects of cancer cell line in nude mice following HULC silencing. More recent studies have shown that expression levels of this lncRNA might be used as diagnostic biomarkers in cancer patients. Moreover, mechanistical studies have revealed associations between HULC and two HCC-related viruses namely hepatitis B and C viruses. Taken together, HULC can be regarded as a therapeutic target not only for HCC but also for a variety of human malignancies. In the current review, we summarized the recent literature about the role of HULC in the carcinogenesis and its potential application in cancer diagnosis and prognosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号