首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1421篇
  免费   125篇
  国内免费   2篇
  2024年   2篇
  2023年   15篇
  2022年   57篇
  2021年   106篇
  2020年   102篇
  2019年   167篇
  2018年   136篇
  2017年   89篇
  2016年   74篇
  2015年   74篇
  2014年   81篇
  2013年   119篇
  2012年   106篇
  2011年   104篇
  2010年   61篇
  2009年   57篇
  2008年   43篇
  2007年   34篇
  2006年   28篇
  2005年   22篇
  2004年   25篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  1999年   4篇
  1998年   2篇
  1996年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1984年   1篇
排序方式: 共有1548条查询结果,搜索用时 15 毫秒
51.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
52.
53.
Venous and arterial thrombosis are conditions that have a considerable burden if left untreated. The hypoxia-induced by the occluded vessel can disrupt the circulation of any organ, the cornerstone of treating thrombosis is rapid diagnosis and appropriate treatment. Diagnosis of thrombosis may be made by using laboratory tests or imaging techniques in individuals who have clinical manifestations of a thrombotic event. The use of serum micro ribonucleic acids (RNAs) has recently been applied to the diagnosis of thrombosis. These small RNA molecules are emerging as new diagnostic markers but have had very limited applications in vascular disease. Most of the articles provided various microRNAs with different levels of accuracy. However, there remains a lack of an appropriate panel of the most specific microRNA in the literature. The purpose of the present review was to summarize the existing data on the use of microRNAs as a diagnostic biomarker for venous thrombosis.  相似文献   
54.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   
55.
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.  相似文献   
56.
57.
Epidermal growth factor receptor (EGFR) is deemed to be one of the main molecular targets for diagnosis and treatment of cancer. It has been identified that EGFR involves in pathogenesis of some forms of human cancers. Monoclonal antibodies targeting EGFR could control the tumor cell growth, proliferation, and apoptosis by suppressing the signal transduction pathways. Nanobodies can be regarded as the smallest intact antigen binding fragments, derived from heavy chain-only antibodies existing in camelids. Here, we describe the identification of an EGFR-specific nanobody, referred to as OA-cb6, obtained from immunized camel with a cell line expressing high levels of EGFR. Utilizing flow cytometry (FACS) and blotting methods, we demonstrated that OA-cb6 nanobody binds specifically to EGFR expressing on the surface of A431 cells. In addition, OA-cb6 nanobody potently causes the inhibition of EGFR over expression, cell growth and proliferation. The antibody fragments can probably be regarded as worthwhile binding block for further rational design of anti-cancer therapy.  相似文献   
58.
59.
Interestingly pharmaceutical sciences are using nanoparticles (NPs) to design and develop nanomaterials-based drugs. However, up to recently, it has not been well realized that NPs themselves may impose risks to the biological systems. In this study, the interaction of silver nanoparticles (AgNPs) with tau protein and SH-SY5Y neuroblastoma cell line, as potential nervous system models, was examined with a range of techniques including intrinsic fluorescence spectroscopy, circular dichroism (CD) spectroscopy, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and acridine orange/ethidium bromide (AO/EB) dual staining method. Fluorescence study showed that AgNPs with a diameter of around 10–20 nm spontaneously form a static complex with tau protein via hydrogen bonds and van der Waals interactions. CD experiment revealed that AgNPs did not change the random coil structure of tau protein. Moreover, AgNPs showed to induce SH-SY5Y neuroblastoma cell mortality through fragmentation of DNA which is a key feature of apoptosis. In conclusion, AgNPs may induce slight changes on the tau protein structure. Also, the concentration of AgNPs is the main factor which influences their cytotoxicity. Since, all adverse effects of NPs are not well detected, so probably additional more specific testing would be needed.  相似文献   
60.
Functionalized carbon nanotubes (CNTs) constitute a new class of nanostructured materials that have vast applications in CNT purification and separation, biosensing, drug delivery, etc. Hybrids formed from the functionalization of CNT with biological molecules have shown interesting properties and have attracted great attention in recent years. Of particular interest is the hybridization of single- or double-stranded nucleic acid (NA) with CNT. Nucleobases, as the building blocks of NA, interact with CNT and contribute strongly to the stability of the NA–CNT hybrids and their properties. In this work, we present a thorough review of previous studies on the binding of nucleobases with graphene and CNT, with a focus on the simulation works that attempted to evaluate the structure and strength of binding. Discrepancies among these works are identified, and factors that might contribute to such discrepancies are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号