首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   197篇
  国内免费   3篇
  2766篇
  2024年   2篇
  2023年   29篇
  2022年   79篇
  2021年   135篇
  2020年   137篇
  2019年   252篇
  2018年   222篇
  2017年   128篇
  2016年   125篇
  2015年   124篇
  2014年   169篇
  2013年   223篇
  2012年   213篇
  2011年   202篇
  2010年   113篇
  2009年   99篇
  2008年   91篇
  2007年   89篇
  2006年   59篇
  2005年   42篇
  2004年   54篇
  2003年   33篇
  2002年   27篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   10篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1968年   3篇
排序方式: 共有2766条查询结果,搜索用时 0 毫秒
81.
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.  相似文献   
82.
Pepino (Solanum muricatum var. pepino) plants were found affected by an extensive leaf spot caused by plant pathogenic fungi during a survey in the Cameron highlands, Pahang state, Malaysia. Symptomatic leaf samples were collected from infected pepino plants and cultivated on PDA medium, and the pathogen was isolated and purified; then, consequently, all isolates were identified as Stemphylium lycopersici on the basis of their cultural and morphological characteristics and combined sequences of the internal transcribed spacer (ITS) and glyceraldehyde‐3‐phosphate dehydrogenase (gpd) regions. A pathogenicity assay on detached leaves further confirmed that S. lycopersici causes leaf spot disease. To the best of our knowledge, this is the first report of S. lycopersici causing leaf spot on pepino in Malaysia and worldwide.  相似文献   
83.

Objective

To see the changes of cardio-metabolic risk factors overtime in polycystic ovary syndrome vs. control women.

Methods

This study was conducted on 637 participants (85 PCOS and 552 control reproductive aged, 18–45 years) of Tehran Lipid and Glucose Study (TLGS), an ongoing population-based cohort study with 12 years of follow-up. The cardiovascular risk factors of these groups were assessed in three-year intervals using standard questionnaires, history taking, anthropometric measures, and metabolic/endocrine evaluation. Generalized estimating equation was used to analyze the data.

Results

Overall mean of insulin (3.55, CI: 0.66–6.45), HOMA-IR (0.63, CI: 0.08–1.18), and HOMA-β (45.90, CI: 0.86–90.93) were significantly higher in PCOS than in healthy women after adjustment for age, BMI, and baseline levels. However, the negative interaction (follow-up years × PCOS status) of PCOS and normal women converged overtime. Comparing third follow-up with first, insulin and HOMA-IR decreased 10.6% and 5%, respectively in PCOS women; and increased 6.7% and 14.6%, respectively in controls (P<0.05). The results did not show any significant result for other cardio-metabolic variables including WC, lipid profile, FPG, 2-h PG, SBP, and DBP.

Conclusion

While the insulin level and insulin resistance rate were higher in reproductive aged PCOS than in healthy women, the difference of these risk factors decreased overtime. Thus, the metabolic consequences of PCOS women in later life may be lower than those initially anticipated.  相似文献   
84.
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation.  相似文献   
85.
Numerous studies have shown both the detrimental and beneficial effects of reactive oxygen species (ROS) in animals, plants, and fungi. These organisms utilize controlled generation of ROS for signaling, pathogenicity, and development. Here, we show that ROS are essential for the pathogenic development of Sclerotinia sclerotiorum, an economically important fungal pathogen with a broad host range. Based on the organism's completed genome sequence, we identified two S. sclerotiorum NADPH oxidases (SsNox1 and SsNox2), which presumably are involved in ROS generation. RNA interference (RNAi) was used to examine the function of SsNox1 and SsNox2. Silencing of SsNox1 expression indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of the SsNox2 gene resulted in limited sclerotial development, but the organism remained fully pathogenic. ΔSsnox1 strains had reduced ROS levels, were unable to develop sclerotia, and unexpectedly correlated with significantly reduced oxalate production. These results are in accordance with previous observations indicating that fungal NADPH oxidases are required for pathogenic development and are consistent with the importance of ROS regulation in the successful pathogenesis of S. sclerotiorum.  相似文献   
86.
The RNA‐binding protein Musashi1 (MSI1) is a marker of progenitor cells in the nervous system functioning as a translational repressor. We detected MSI1 mRNA in several bladder carcinoma cell lines, but not in cultured normal uroepithelial cells, whereas the paralogous MSI2 gene was broadly expressed. Knockdown of MSI1 expression by siRNA induced apoptosis and a severe decline in cell numbers in 5637 bladder carcinoma cells. Microarray analysis of gene expression changes after MSI1 knockdown significantly up‐regulated 735 genes, but down‐regulated only 31. Up‐regulated mRNAs contained a highly significantly greater number and density of Musashi binding sites. Therefore, a much larger set of mRNAs may be regulated by Musashi1, which may affect not only their translation, but also their turnover. The study confirmed p21CIP1 and Numb proteins as targets of Musashi1, suggesting additionally p27KIP1 in cell‐cycle regulation and Jagged‐1 in Notch signalling. A significant number of up‐regulated genes encoded components of stress granules (SGs), an organelle involved in translational regulation and mRNA turnover, and impacting on apoptosis. Accordingly, heat shock induced SG formation was augmented by Musashi1 down‐regulation. Our data show that ectopic MSI1 expression may contribute to tumorigenesis in selected bladder cancers through multiple mechanisms and reveal a previously unrecognized function of Musashi1 in the regulation of SG formation.  相似文献   
87.
As with chromosomal DNA, the mitochondrial DNA (mtDNA) can contain mutations that are highly pathogenic .In fact, many diseases of the central nervous system are known to be caused by mutations in mtDNA. Dysfunction of the mitochondrial Respiratory Chain (RC) has been shown in patients with neurological disease including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple sclerosis (MS). MS is a demyelinating disease of central nervous system characterized by morphological hallmarks of inflammation, demyelination and axonal loss. Considering this importance, we decided to investigate several highly mutative parts of mtDNA for point mutations as MT-LTI (tRNALeucine1(UUA/G)), MT-NDI (NADH Dehydrogenase subunit 1), MT-COII (Cytochrome c oxidase subunit II), MT-TK (tRNALysine), MT-ATP8 (ATP synthase subunit F0 8) and MT-ATP6 (ATP synthase subunit F0 6) in 20 Iranian MS patients and 80 age-matched control subjects by PCR and automated DNA sequencing to evaluate any probable point mutations. Our results revealed that 15 (75%) out of 20 MS patients had point mutations. Some of point mutations were newly found in this study. This study suggested that point mutation occurred in mtDNA might be involved in pathogenesis of MS.  相似文献   
88.
Recombinant human Factor IX (rFIX) was cloned in a mammalian expression vector and transfected into CHO and HEK-293. Treatment with 10−9 M methyl testosterone increased rFIX production by 30–50% in CHO and HEK clones. However, 10−9 M 17β-oestradiol increased production of rFIX by ~50% in CHO-F7 clone and decreased production by 48% and 37% in CHO-F8 and HEK-F2-6, respectively. Progesterone treatment inhibited rFIX production in both cell lines. Production of rFIX can thus be increased by sex hormone treatment and therefore used to enhance biotechnological production in mammalian cells.  相似文献   
89.

Background

Genetic variation is an essential means of evolution and adaptation in many organisms in response to environmental change. Certain DNA alterations can be carried out by site-specific recombinases (SSRs) that fall into two families: the serine and the tyrosine recombinases. SSRs are seldom found in eukaryotes. A gene homologous to a tyrosine site-specific recombinase has been identified in the genome of Plasmodium falciparum. The sequence is highly conserved among five other members of Plasmodia.

Methodology/Principal Findings

The predicted open reading frame encodes for a ∼57 kDa protein containing a C-terminal domain including the putative tyrosine recombinase conserved active site residues R-H-R-(H/W)-Y. The N-terminus has the typical alpha-helical bundle and potentially a mixed alpha-beta domain resembling that of λ-Int. Pf-Int mRNA is expressed differentially during the P. falciparum erythrocytic life stages, peaking in the schizont stage. Recombinant Pf-Int and affinity chromatography of DNA from genomic or synthetic origin were used to identify potential DNA targets after sequencing or micro-array hybridization. Interestingly, the sequences captured also included highly variable subtelomeric genes such as var, rif, and stevor sequences. Electrophoretic mobility shift assays with DNA were carried out to verify Pf-Int/DNA binding. Finally, Pf-Int knock-out parasites were created in order to investigate the biological role of Pf-Int.

Conclusions/Significance

Our data identify for the first time a malaria parasite gene with structural and functional features of recombinases. Pf-Int may bind to and alter DNA, either in a sequence specific or in a non-specific fashion, and may contribute to programmed or random DNA rearrangements. Pf-Int is the first molecular player identified with a potential role in genome plasticity in this pathogen. Finally, Pf-Int knock-out parasite is viable showing no detectable impact on blood stage development, which is compatible with such function.  相似文献   
90.
A 2 × 3 factorial experiment was conducted to evaluate the effect of partial substitution of dietary fish meal with soybean meal and citric acid (CA) supplementation on growth, food utilization, muscle composition and nutrient digestibility of Beluga, Huso huso. Three isonitrogenic and isoenergetic diets, as SBM1 (soybean meal protein (SBP):fishmeal protein (FP) = 1:3), SBM2 (SBP:FP = 2:3) and SBM3 (SBP:FP = 1:1) containing two levels of CA (0 and 30 g kg−1) were fed to triplicate groups of fish for 8 weeks. The results revealed that adding CA increased (P<0.05) the weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) and decreased (P<0.05) food conversion rate (FCR) whereas partial substitution of fishmeal with soybean meal decreased (P<0.05) growth performance. Partial replacement of fishmeal with SBM (P=0.021) as well as CA supplementation (P=0.019) and their interaction (P<0.001) affected hepatosomatic index (HSI). No differences (P>0.05) were observed for viscerosomatic index (VSI) among treatments (P>0.05). No differences (P>0.05) were detected in moisture, protein of muscle sample among treatments, but lipid content was reduced (P<0.05) while ash content increased (P=0.035) by CA. Soybean meal decreased (P<0.05) nutrient digestibility, whereas CA improved apparent protein and phosphorus (P) digestibility (P=0.011 and P<0.001 respectively). No interaction (P<0.05) between levels of SBM and CA was found on these parameters. Results of the present study indicate that Beluga has a limited ability to utilize SBM as a protein source in practical diets whereas CA can improve growth and nutrient utilization in Beluga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号