首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1707篇
  免费   151篇
  国内免费   1篇
  2024年   4篇
  2023年   16篇
  2022年   54篇
  2021年   118篇
  2020年   99篇
  2019年   195篇
  2018年   153篇
  2017年   100篇
  2016年   95篇
  2015年   92篇
  2014年   108篇
  2013年   150篇
  2012年   143篇
  2011年   127篇
  2010年   69篇
  2009年   53篇
  2008年   51篇
  2007年   53篇
  2006年   28篇
  2005年   25篇
  2004年   28篇
  2003年   21篇
  2002年   19篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1984年   1篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1966年   1篇
  1933年   1篇
排序方式: 共有1859条查询结果,搜索用时 0 毫秒
91.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   
92.
Multiple sclerosis (MS) is an autoimmune disease in which the immune system attacks the nerve cells, resulting in neurological disorders. Oxidative stress, free radicals, and neuritis have important roles in MS pathogenesis. Here, we aim to evaluate the effect of crocin on inflammatory markers, oxidative damage, and deoxyribonucleic acid (DNA) damage in the blood of patients with MS. A total of 40 patients were divided into two groups, drug and placebo‐treated groups, using random assignment. Participants of the intervention and control groups received two crocin capsules or placebo per day for 28 days, respectively. Findings revealed a significant decrease in the level of important pathogenic factors in MS, including lipid peroxidation, DNA damage, tumor necrosis factor‐alpha, and interleukin 17 as well as a significant increase in the total antioxidant capacity in the serum of patients treated with crocin compared with the placebo group. Our results suggest the beneficial and therapeutic effects of crocin in MS.  相似文献   
93.
94.
95.
Glutathione (GSH) is the major intracellular thiol present in 1-10-mm concentrations in human cells. However, the redox potential of the 2GSH/GSSG (glutathione disulfide) couple in cells varies in association with proliferation, differentiation, or apoptosis from -260 mV to -200 or -170 mV. Hydrogen peroxide is transiently produced as second messenger in receptor-mediated growth factor signaling. To understand oxidation mechanisms by GSSG or nitric oxide-related nitrosylation we studied effects on glutaredoxins (Grx), which catalyze GSH-dependent thiol-disulfide redox reactions, particularly reversible glutathionylation of protein sulfhydryl groups. Human Grx1 and Grx2 contain Cys-Pro-Tyr-Cys and Cys-Ser-Tyr-Cys active sites and have three and two additional structural Cys residues, respectively. We analyzed the redox state and disulfide pairing of Cys residues upon GSSG oxidation and S-nitrosylation. Cytosolic/nuclear Grx1 was partly inactivated by both S-nitrosylation and oxidation. Inhibition by nitrosylation was reversible under anaerobic conditions; aerobically it was stronger and irreversible, indicating inactivation by nitration. Oxidation of Grx1 induced a complex pattern of disulfide-bonded dimers and oligomers formed between Cys-8 and either Cys-79 or Cys-83. In addition, an intramolecular disulfide between Cys-79 and Cys-83 was identified, predicted to have a profound effect on the three-dimensional structure. In contrast, mitochondrial Grx2 retains activity upon oxidation, did not form disulfide-bonded dimers or oligomers, and could not be S-nitrosylated. The dimeric iron sulfur cluster-coordinating inactive form of Grx2 dissociated upon nitrosylation, leading to activation of the protein. The striking differences between Grx1 and Grx2 reflect their diverse regulatory functions in vivo and also adaptation to different subcellular localization.  相似文献   
96.
Phytochemistry Reviews - The production of safe foods with little or no artificial preservatives is one of the foremost leading challenges for food manufacturing industries because synthetic...  相似文献   
97.
98.
99.
Osteoarthritis (OA) is the most common type of arthritis and no longer is considered as an absolute consequence of joint mechanical use (wear and tear); rather recent data demonstrate the pivotal role of inflammatory mediators in the development and progression of this disease. This multifactorial disease results from several environmental and inherited factors. Genetic cannot solely explain all the contribution share of inheritance and, this way, it is speculated that epigenetics can play a role, too. Moreover, environmental factors can induce local epigenetic changes. The epigenetic contribution to OA pathogenesis occurs at all of its levels, DNA methylation, histone modification, microRNA, and long noncoding RNA. In fact, during early phases of OA pathogenesis, environmental factors employ epigenetic mechanisms to provide a positive feedback for the OA-related pathogenic mechanisms and pathways with an ultimate outcome of a well-established clinical OA. These epigenetic changes stay during clinical disease and prevent the body natural healing and regenerative processes to work properly, resulting in an incurable disease condition. In this review article, we aimed to have an overview on the studies performed with regard to understanding the role of epigenetics in the etiopathogenesis of OA and highlighted the importance of such kind of regulatory mechanisms within this context.  相似文献   
100.
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号