首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11182篇
  免费   681篇
  国内免费   32篇
  11895篇
  2024年   28篇
  2023年   124篇
  2022年   384篇
  2021年   605篇
  2020年   386篇
  2019年   535篇
  2018年   553篇
  2017年   392篇
  2016年   515篇
  2015年   565篇
  2014年   685篇
  2013年   863篇
  2012年   913篇
  2011年   786篇
  2010年   473篇
  2009年   388篇
  2008年   475篇
  2007年   472篇
  2006年   405篇
  2005年   396篇
  2004年   317篇
  2003年   261篇
  2002年   233篇
  2001年   111篇
  2000年   98篇
  1999年   81篇
  1998年   61篇
  1997年   31篇
  1996年   39篇
  1995年   41篇
  1994年   28篇
  1993年   29篇
  1992年   47篇
  1991年   42篇
  1990年   47篇
  1989年   43篇
  1988年   48篇
  1987年   33篇
  1986年   30篇
  1985年   37篇
  1984年   34篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Genistein effects on growth and cell cycle ofCandida albicans   总被引:7,自引:0,他引:7  
Microbial virulence is generally considered to be multifactorial with infection resulting from the sum of several globally regulated virulence factors. Estrogen may serve as a signal for global virulence induction in Candida albicans. Nonsteroidal estrogens and estrogen receptor antagonists may therefore have interesting effects on yeast and their virulence factors. Growth of C. albicans was monitored by viable plate counts at timed intervals after inoculation into yeast nitrogen broth plus glucose. To determine if increased growth of yeast in the presence of estradiol was due to tyrosine kinase-mediated signaling, we measured growth in the presence of genistein, estradiol or genistein plus estradiol and compared these conditions to controls, which were not supplemented with either compound. Unexpectedly, genistein stimulated growth of C. albicans. In addition, genistein was found to increase the rate of germination (possibly reflecting release from G(0) into G(1) cell cycle phase) and also increased Hsp90 expression, demonstrated by a dot blot technique which employed a commercial primary antibody detected with chemiluminescence with horseradish peroxidase-labeled secondary antibody. These biological effects may be attributable to genistein's activity as a phytoestrogen. In contrast, nafoxidine suppressed growth of Candida and mildly diminished Hsp90 expression. This study raises the possibility of receptor cross-talk between estrogen and isoflavinoid compounds, and antiestrogens which may affect the same signaling system, though separate targets for each compound were not ruled out.  相似文献   
82.
Candidate gene association studies implicate the detection of contributing single nucleotide polymorphism (SNP) for the target traits and have been recommended as a promising technique to anatomize the complex characters in plants. The ERECTA gene in plants controls different physiological functions. In this study, we identified SNPs in 1.1 kb partial sequences of TaER-1 and TaER-2 of wheat (Triticum aestivum L.). Thirty-nine SNPs were identified in the coding regions of TaER-1 gene in 33 wheat genotypes, of which 20 SNPs caused non-synonymous mutations while 19 SNPs produced synonymous mutations; 31 SNPs were located in the coding regions of TaER-2 gene in 26 genotypes, of which 18 SNPs caused non-synonymous mutations and 13 SNPs caused synonymous mutations. In addition, 32 SNPs in TaER-1 and 9 SNPs in TaER-2 were also identified in the non-coding regions. Moreover, the significant genetic associations of SNPs of TaER-1 and TaER-2 genes with carbon isotope discrimination, stomatal conductance, photosynthetic rate, transpiration rate, intrinsic water use efficiency (iWUE), leaf length, leaf width, stomatal density, epidermal cell density, and stomatal index were noted in wheat genotypes. This study confirms the importance of TaER-1 and TaER-2 genes which could improve iWUE of wheat by regulating leaf gas exchange and leaf structural traits. These identified SNPs may play a critical role in molecular breeding by means of marker-assisted selection.  相似文献   
83.
The relationship between serum anti-heat shock protein (Hsp)27 antibody and high sensitive C-reactive protein (hs-CRP) levels and indices of cardiac function were investigated in patients undergoing coronary artery bypass grafting (CABG) or heart valve replacement. The changes in anti-Hsp27 antibody titers and hs-CRP levels were compared among patients undergoing off-pump and on-pump CABG or valvular heart replacement. Fifty-three patients underwent off-pump, on-pump CABG, and heart valvular replacement in each group. Serum anti-Hsp27 titers and hs-CRP values were measured 24 h before and after the operation and at discharge. Echocardiography was performed before surgery and before discharge. The results were compared with values from 83 healthy controls. hs-CRP levels increased and anti-Hsp27 antibody decreased following surgery (P < 0.001 and P < 0.05, respectively), although these changes were independent of operative procedure (P = 0.361 and P = 0.120, respectively). Anti-Hsp27 antibody levels were higher at the time of discharge (P = 0.016). Only in coronary patients were anti-Hsp27 antibody levels negatively associated with E/E′ (r = −0.268, P = 0.022), a marker of pulmonary capillary wedge pressure. In conclusions, anti-Hsp27 antibody levels are associated with indices of cardiac function in coronary patients. Cardiopulmonary bypass had no significant effect on the induction of changes in anti-Hsp27 levels. Moreover, anti-Hsp27 antibody levels fell in all groups postoperatively; this may be due to the formation of immune complexes of antigen–antibody, and antibody levels were higher at the time of discharge.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0358-y) contains supplementary material, which is available to authorized users.  相似文献   
84.
Pseudomonas sp. strain Bk8 was isolated from field soil contaminated with different urea-herbicides. This strain is a plasmid (pBkB)-harbouring organism capable of complete degradation of diuron herbicide. Plasmid-cured strain Bk8M was obtained by treatment of Pseudomonas sp. Bk8 with Mitomycin C. This cured strain is capable of only partial degradation of diuron side chain and accumulated a phenolic compound in the medium during growing on diuron as a sole source of carbon and energy. Conjugation experiment was carried out using Bk8M as a recipient and Bk8 as a donor of pBk8 plasmid. The transconjugant was able to degrade a diuron without accumulation of phenolic compound. It was proposed that plasmid pBk8 is self-transmissible and involved in the degradation of diuron aromatic ring but it is not connected with the transformation of diuron into diuron phenol compound.  相似文献   
85.
86.
Pandey AK  Gaind S  Ali A  Nain L 《Biodegradation》2009,20(3):293-306
A composting experiment was conducted to evaluate the effect of a hyperlignocellulolytic fungal consortium and different nitrogen amendments on paddy straw composting in terms of changes in physicochemical and biological parameters. A fungal consortium comprising four lignocellulolytic mesophilic fungal cultures was used as inoculum for bioaugmentation of paddy straw in perforated pits. The comparative effect of farmyard manure (FYM), soybean trash, poultry litter and urea on the composting process was evaluated at monthly intervals in terms of physicochemical (pH, EC, available P, C:N ratio and humus content) and biological (enzymatic and microbial activity) parameters. The compost prepared from bioaugmented paddy straw composting mixture, with poultry manure as nitrogen supplement attained desirable C:N ratio in 1 month and displayed least phytotoxicity levels along with higher production of β-1,4-Exoglucanase. The combined activity of the autochthonous composting microbiota as well as the externally applied fungal inoculum accelerated the composting process of paddy straw. Supplementation of paddy straw with poultry manure in 8:1 ratio was identified as the best treatment to hasten the composting process. This study highlights the importance of application of fungal inoculum and an appropriate N-amendment such as poultry manure for preparation of compost using a substrate having high C:N ratio, such as paddy straw.  相似文献   
87.
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle’s envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.

Complementary mutations in TIC100 of the chloroplast inner envelope membrane cause reductions or corrective improvements in chloroplast protein import, and highlight a signaling role.

IN A NUTSHELLBackground: Plants harvest energy from the sun and CO2 from the air and convert them into the energy-rich molecules they, and eventually us, are made of. Plants do this, photosynthesis, in bodies called chloroplasts inside their cells. Chloroplasts, made of protein and membrane material, were, before plants evolved, free-living bacteria, but the synthesis of most of their proteins occurs outside them, using information carried by the cell’s nuclear DNA, so most proteins have to be brought into developing chloroplasts, across the double membrane surrounding them, through dedicated, selective channels, formed by TOC (outer) and TIC (inner envelope) proteins. The identity of those channels matters as it helps determine versions of chloroplasts suited for particular environments. Which TIC proteins constitute the inner envelope channel has been a matter of controversy.Question: A mutant Arabidopsis plant called cue8 is slow-to-green (young leaves begin almost white) and shows delayed chloroplast and plant development. We looked for the molecular identity of the CUE8 gene. We also caused further mutations in this mutant and searched whether any corrected the defects in cue8.Findings: We found the mutated gene causing the cue8 defects is the TIC100 gene. This is one essential component of the “TIC 1-MDa complex,” one of the two versions of the TIC import complex under debate. That complex is made of several proteins, all present at reduced levels in cue8. In laboratory assays in which proteins are imported into isolated chloroplasts, cue8 performed worse than normal plants for a photosynthetic and a housekeeping chloroplast protein. A corrective, “suppressor” mutant was identified, and it carried a second mutation in TIC100, one physically complementary to the first one. Both the single and the double (suppressed) mutant still were slow-to-green, which evidences a signaling role for import defects to the nucleus, making photosynthetic genes active or not.Next steps: Surprisingly the grasses, including the cereals, have one core protein of the TIC 1 MDa complex but not the rest (including TIC100). We don’t know how their TIC channels operate. We also need to learn how the information on the defect in protein import, which occurs at the chloroplast envelope, is relayed to the cell’s nucleus (but we do have some clues).  相似文献   
88.
The COMPASS family of H3K4 methylases in Drosophila   总被引:1,自引:0,他引:1  
Methylation of histone H3 lysine 4 (H3K4) in Saccharomyces cerevisiae is implemented by Set1/COMPASS, which was originally purified based on the similarity of yeast Set1 to human MLL1 and Drosophila melanogaster Trithorax (Trx). While humans have six COMPASS family members, Drosophila possesses a representative of the three subclasses within COMPASS-like complexes: dSet1 (human SET1A/SET1B), Trx (human MLL1/2), and Trr (human MLL3/4). Here, we report the biochemical purification and molecular characterization of the Drosophila COMPASS family. We observed a one-to-one similarity in subunit composition with their mammalian counterparts, with the exception of LPT (lost plant homeodomains [PHDs] of Trr), which copurifies with the Trr complex. LPT is a previously uncharacterized protein that is homologous to the multiple PHD fingers found in the N-terminal regions of mammalian MLL3/4 but not Drosophila Trr, indicating that Trr and LPT constitute a split gene of an MLL3/4 ancestor. Our study demonstrates that all three complexes in Drosophila are H3K4 methyltransferases; however, dSet1/COMPASS is the major monoubiquitination-dependent H3K4 di- and trimethylase in Drosophila. Taken together, this study provides a springboard for the functional dissection of the COMPASS family members and their role in the regulation of histone H3K4 methylation throughout development in Drosophila.  相似文献   
89.
In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.  相似文献   
90.
In order to over express the xylA gene of Streptomyces sp. SK strain, it was cloned under the control of the constitutive ermE-up promoter. This construct was integrated through site-specific recombination process into the chromosome of a Streptomyces violaceoniger glucose isomerase deficient strain using the non-replicative vector pTS55. The resulting CBS4 strain shows a perfect stability in the absence of selection pressure. Its glucose isomerase activity was about four and nine-fold greater, than that obtained from Streptomyces sp. SK, respectively fully induced or not by xylose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号