首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   92篇
  国内免费   2篇
  2023年   10篇
  2022年   13篇
  2021年   34篇
  2020年   21篇
  2019年   26篇
  2018年   32篇
  2017年   27篇
  2016年   51篇
  2015年   70篇
  2014年   72篇
  2013年   110篇
  2012年   95篇
  2011年   107篇
  2010年   63篇
  2009年   60篇
  2008年   88篇
  2007年   76篇
  2006年   70篇
  2005年   50篇
  2004年   54篇
  2003年   50篇
  2002年   37篇
  2001年   41篇
  2000年   20篇
  1999年   25篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1354条查询结果,搜索用时 328 毫秒
161.
Mun S  Baek Y  Kim C  Lee YW  Yoon J 《Biofouling》2012,28(6):627-633
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   
162.
Obesity consists in fat accumulation leading to increase in adipose cells number and size. Adipocyte membrane biophysical properties are critical to maintain cellular viability in metabolically healthy obesity. This study investigated the effect of the genetic background and dietary protein restriction on fat tissue lipid composition, adipocyte membrane fluidity and water permeability using the pig as experimental model. Twenty-four male pigs from distinct genotypes, lean and obese, were fed on normal and reduced protein diets within a 2 × 2 factorial arrangement (two genotypes and two diets). Backfat thickness was twofold higher in obese than in lean pigs but unrelated to dietary protein level. In contrast, total fatty acids in the subcutaneous adipose tissue were dependent on both breed and diet, with increased lipid content promoted by the fatty genotype and by the restriction of dietary protein. Adipose membranes isolated from obese pig's subcutaneous fat tissue showed higher permeability to water, in line with an increased fluidity. Moreover, the reduced content of dietary protein influenced positively the fluidity of adipose membranes. Neither genotype nor diet affected total cholesterol concentration in the adipose membranes. Membrane-saturated fatty acids' content was influenced by genotype, while membrane-polyunsaturated fatty acids, particularly from the n-6 family, was influenced by diet. The ratio of oleic (18:1c9)/linoleic (18:2n-6) acids was positively correlated with membrane fluidity. All together, these findings reinforce the genetic background as a determinant player on adipose membrane biophysical properties and point to the dietary protein level as an important factor for subcutaneous lipid deposition as well as for regulation of membrane function, factors that may have impact on human obesity and metabolic syndrome.  相似文献   
163.
Cadmium is a toxic metal, and the mechanism of cadmium toxicity in living organisms has been well studied. Here, we used Saccharomyces cerevisiae as a model system to examine the detailed molecular mechanism of cell growth defects caused by cadmium. Using a plate assay of a yeast deletion mutant collection, we found that deletion of SML1, which encodes an inhibitor of Rnr1, resulted in cadmium resistance. Sml1 protein levels increased when cells were treated with cadmium, even though the mRNA levels of SML1 remained unchanged. Using northern and western blot analyses, we found that cadmium inhibited Sml1 degradation by inhibiting Sml1 phosphorylation. Sml1 protein levels increased when cells were treated with cadmium due to disruption of the dependent protein degradation pathway. Furthermore, cadmium promoted cell cycle progression into the G2 phase. The same result was obtained using cells in which SML1 was overexpressed. Deletion of SML1 delayed cell cycle progression. These results are consistent with Sml1 accumulation and with growth defects caused by cadmium stress. Interestingly, although cadmium treatment led to increase Sml1 levels, intracellular dNTP levels also increased because of Rnr3 upregulation due to cadmium stress. Taken together, these results suggest that cadmium specifically affects the phosphorylation of Sml1 and that Sml1 accumulates in cells.  相似文献   
164.
S100A7 (psoriasin) is a calcium-binding protein that is upregulated in many types of cancer and often associated with poor prognosis. Its role in carcinogenesis has been associated with the stimulation of VEGF and EGF activity. The recent research showed that psoriasin directly interacts with αvβ6 integrin, a protein related to the invasive phenotype of cancer. Moreover, this interaction promotes the αvβ6-dependent invasive activity. The important function of S100A7 in carcinoma development determines a great need for valuable tools enabling its detection, quantification and also activity inhibition. Here, we show the selection of S100A7 specific antibody fragments from the human scFv phage library ETH-2 Gold. We have selected antibody fragments specific for psoriasin, purified them and analyzed by BIAcore affinity measurements. The best clone was subjected to affinity maturation procedure yielding molecule with a subnanomolar affinity towards human S100A7 protein. Selected clone was expressed in a bivalent format and applied for immunostaining analysis, which confirmed the ability of the antigen recognition in physiological conditions. We therefore propose that obtained antibody, that is the first phage display-derived human antibody against psoriasin, can serve as a useful psoriasin binding platform in research, diagnostics and therapy of cancer.  相似文献   
165.
Tetanus toxin (TeT), an exotoxin, has been studied to cause tetanus in mammalian brains, and it can block the release of some neurotransmitters and affect seizure propagation. In the present study, we investigated neuronal damage/death and glial changes in the mouse hippocampus after systemic administration (intraperitoneal injection) of TeT 10 and 100 ng/kg. In both the 10 and 100 ng/kg TeT-treated groups, no neuronal death occurred in any subregions of the mouse hippocampus until 24 h post-treatment; however, there were changes in glia in the hippocampus depending on time course and dosage. The morphology of GFAP-immunoreactive astrocytes and Iba-1-immunoreactive microglia was apparently changed in the 100 ng/kg TeT treated-group compared to the 10 ng/kg TeT treated-group. In the 100 ng/kg TeT treated-group, they were increased in size and their immunoreactivity was distinctively increased from 12 h post-treatment. We also found that their protein levels were increased in the hippocampus at 12 h post-treatment of 100 ng/kg TeT. In conclusion, these results indicate that the systemic administration of 100 ng/kg TeT induced a distinctive microglia changes in the mouse hippocampus without any neuronal death/damage.  相似文献   
166.
167.
Marine derived actinomycetes constituting 185 strains were screened for their antifouling activity against the marine seaweed, Ulva pertusa, and fouling diatom, Navicula annexa. Strain 291-11 isolated from the seaweed, Undaria pinnatifida, rhizosphere showed the highest antifouling activity and was identified as Streptomyces praecox based on a 16S rDNA sequence analysis. Strain 291-11 was therefore named S. praecox 291-11. The antifouling compounds from S. praecox 291-11 were isolated, and their structures were analyzed. The chemical constituents representing the antifouling activity were identified as (6S,3S)-6-benzyl-3-methyl-2,5-diketopiperazine (bmDKP) and (6S,3S)-6-isobutyl-3-methyl-2,5-diketopiperazine (imDKP) by interpreting the nuclear magnetic resonance and high-resolution mass spectroscopy data. Approximately 4.8 mg of bmDKP and 3.1 mg of imDKP were isolated from 1.2 g of the S. praecox 291-11 crude extract. Eight different compositions of culture media were investigated for culture, the TBFeC medium being best for bmDKP and TCGC being the optimum for imDKP production. Two compounds respectively showed a 17.7 and 21 therapeutic ratio (LC50/EC50) to inhibit zoospores, and two compounds respectively showed a 263 and 120.2 therapeutic ratio to inhibit diatoms.  相似文献   
168.
Kang SU  Shin YS  Hwang HS  Baek SJ  Lee SH  Kim CH 《PloS one》2012,7(4):e34988
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA.  相似文献   
169.
ABSTRACT: BACKGROUND: The objective of this study was to identify prognostic factors for survival in patients with primary diffuse large B-cell lymphoma (DLBCL) of the adrenal gland. METHODS: Thirty one patients diagnosed with primary adrenal DLBCL from 14 Korean institutions and treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) were analyzed. RESULTS: Complete remission (CR) and overall response rate after R-CHOP chemotherapy were 54.8% and 87.0%. The 2-year estimates of overall survival (OS) and progression-free survival (PFS) were 68.3% and 51.1%. In patients achieving CR, significant prolongations of OS (P = 0.029) and PFS (P = 0.005) were observed. Ann Arbor stage had no influence on OS. There was no significant difference in OS between patients with unilateral involvement of adrenal gland and those with bilateral involvement. When staging was modified to include bilateral adrenal involvement as one extranodal site, early stage (I or II) significantly correlated with longer OS (P = 0.021) and PFS (P <0.001). CONCLUSIONS: Contrary to prior reports, our data suggests that outcomes of primary adrenal DLBCL are encouraging using a regimen of R-CHOP, and that achieving CR after R-CHOP is predictive of survival. Likewise, our modified staging system may have prognostic value.  相似文献   
170.
Rho GDP dissociation inhibitor 2 (RhoGDI2) was initially identified as a regulator of the Rho family of GTPases. Our recent works suggest that RhoGDI2 promotes tumor growth and malignant progression, as well as enhances chemoresistance in gastric cancer. Here, we delineate the mechanism by which RhoGDI2 promotes gastric cancer cell invasion and chemoresistance using two-dimensional gel electrophoresis (2-DE) on proteins derived from a RhoGDI2-overexpressing SNU-484 human gastric cancer cell line and control cells. Differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 47 differential protein spots were identified; 33 were upregulated, and 14 were downregulated by RhoGDI2 overexpression. Upregulation of SAE1, Cathepsin D, Cofilin1, CIAPIN1, and PAK2 proteins was validated by Western blot analysis. Loss-of-function analysis using small interference RNA (siRNA) directed against candidate genes reveals the need for CIAPIN1 and PAK2 in RhoGDI2-induced cancer cell invasion and Cathepsin D and PAK2 in RhoGDI2-mediated chemoresistance in gastric cancer cells. These data extend our understanding of the genes that act downstream of RhoGDI2 during the progression of gastric cancer and the acquisition of chemoresistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号