首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6574篇
  免费   476篇
  国内免费   1篇
  7051篇
  2023年   22篇
  2022年   82篇
  2021年   117篇
  2020年   93篇
  2019年   128篇
  2018年   171篇
  2017年   151篇
  2016年   237篇
  2015年   408篇
  2014年   421篇
  2013年   464篇
  2012年   622篇
  2011年   515篇
  2010年   339篇
  2009年   285篇
  2008年   393篇
  2007年   368篇
  2006年   317篇
  2005年   314篇
  2004年   314篇
  2003年   250篇
  2002年   178篇
  2001年   97篇
  2000年   110篇
  1999年   80篇
  1998年   46篇
  1997年   42篇
  1996年   29篇
  1995年   31篇
  1994年   21篇
  1993年   20篇
  1992年   29篇
  1991年   25篇
  1990年   19篇
  1989年   22篇
  1988年   22篇
  1987年   20篇
  1986年   19篇
  1985年   19篇
  1984年   20篇
  1983年   19篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1979年   10篇
  1978年   10篇
  1976年   10篇
  1975年   13篇
  1974年   8篇
  1971年   8篇
排序方式: 共有7051条查询结果,搜索用时 15 毫秒
121.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
122.
A fed-batch culture process followed by subsequent photoautotrophic induction was established for the high density culture of astaxanthin-rich Haematococcus pluvialis using a CO2-fed flat type photobioreactor under unsynchronized illumination. Fed-batch culture was performed with an exponential feeding strategy of the growth-limiting nutrients, nitrate and phosphate, concurrently with the stepwise supplementation of light depending on the cell concentration. During the growth phase, a biomass of 1.47 g/L was obtained at a biomass productivity of 0.33 g/L/day. Photoautotrophic induction of the well-grown vegetative cells was performed consecutively by increasing the light intensity to 400 μmol photon/m2/s, while keeping the other conditions in the CO2-fed flat type photobioreactor fixed, yielding an astaxanthin production of 190 mg/L at an astaxanthin productivity of 14 mg/L/day. The proposed sequential photoautotrophic process has high potential as simple and productive process for the production of valuable Haematococcus astaxanthin.  相似文献   
123.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   
124.
In this study, the effects of the extract and four tanshinone compounds from the dried root of Salvia miltiorrhiza Bunge (Labiatae) on the tyrosine phosphorylation of the insulin receptor (IR) β-subunit and the downstream signaling were examined in Chinese-hamster ovary cells expressing human insulin receptors (CHO/IR cells) as well as in 3T3-L1 adipocytes. In addition the translocation of the glucose transporter 4 was investigated in 3T3-L1 adipocytes. Total extract of Danshen (1–10 μg/ml) and the four tanshinones (10 μM) did not show any activity, but the total extract and the tanshinone I, IIA and 15, 16-dihydrotanshinone I except cryptotanshinone enhanced the activity of insulin (1 nM) on the tyrosine phosphorylation of the IR as well as the activation of the downstream kinases Akt, ERK1/2, and GSK3β. In the adipocytes the same IR-downstream signaling and the translocation of glucose transporter 4 were demonstrated by the three tanshinones in the presence of insulin. These insulin-sensitizing activities of tanshinones may be useful for developing a new class of specific IR activators as anti-diabetic agents.  相似文献   
125.
Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4flox/flox) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.  相似文献   
126.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
127.
Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH   总被引:16,自引:0,他引:16  
Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.  相似文献   
128.
Human thrombopoietin (hTPO) is a heavily glycosylated protein with 6 and 24 potential N- and O-glycosylation sites, respectively. To determine the effect of sodium butyrate (NaBu) on the production and quality of hTPO in recombinant Chinese hamster ovary (rCHO) cells, NaBu (0-10 mM) was added to the cultures of exponentially growing cells. NaBu addition significantly increased both the specific and volumetric hTPO production, although it decreased the cell viability by apoptosis in a dose-dependent manner. The highest hTPO concentration of 82.2 +/- 5.6 microgml-1 was obtained in the culture with 3 mM NaBu addition. Compared with the culture without NaBu addition, the culture with 3 mM NaBu resulted in a 6.4-fold increase in qTPO and a 3.3-fold increase in the final hTPO concentration on day 7. However, NaBu deteriorated the quality of hTPO, resulting from increased heterogeneity, reduced acidic hTPO isoforms, reduced alpha(2 --> 3) sialylation, and decreased in vivo biological activity. We also found that the biological activity of hTPO in the culture with 3 mM NaBu addition collected on day 7 was 72% of that in the culture without NaBu addition. Taken together, the use of NaBu or its optimal concentration for high-level expression of a heavily glycosylated protein like hTPO should be determined by considering its detrimental effect on the quality of glycoprotein.  相似文献   
129.
For the development of safer anti-inflammatory agents, simple aromatic compounds containing propenone moiety were prepared and evaluated for their dual COX/5-LOX inhibitory activities. Among the 17 prepared compounds, most of the compounds exhibited considerable COX/5-LOX inhibitory activities. Especially compound C(15) showed the most significant dual COX/5-LOX inhibitory activity.  相似文献   
130.
Reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases including inflammatory bowel diseases (IBD). Meanwhile, several studies suggested the protective role of ROS in immune-mediated inflammatory diseases, and it was recently reported that dextran sodium sulfate (DSS)-induced colitis was attenuated in mice with an elevated level of ROS due to deficiency of peroxiredoxin II. Regulatory T cells (Tregs) are critical in the prevention of IBD and Treg function was reported to be closely associated with ROS level, but it has been investigated only in lowered levels of ROS so far. In the present study, in order to clarify the relationship between ROS level and Treg function, and their role in the pathogenesis of IBD, we investigated mice with an elevated level of ROS due to deficiency of both glutathione peroxidase (GPx)-1 and catalase (Cat) for the susceptibility of DSS-induced colitis in association with Treg function. The results showed that DSS-induced colitis was attenuated and Tregs were hyperfunctional in GPx1−/− × Cat−/− mice. In vivo administration of N-acetylcysteine (NAC) aggravated DSS-induced colitis and decreased Treg function to the level comparable to WT mice. Attenuated Th17 cell differentiation from naïve CD4+ cells as well as impaired production of IL-6 and IL-17A by splenocytes upon stimulation suggested anti-inflammatory tendency of GPx1−/− × Cat−/− mice. Suppression of Stat3 activation in association with enhancement of indoleamine 2,3-dioxygenase and FoxP3 expression might be involved in the immunosuppressive mechanism of GPx1−/− × Cat−/− mice. Taken together, it is implied that ROS level is critical in the regulation of Treg function, and IBD may be attenuated in appropriately elevated levels of ROS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号