首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4068篇
  免费   304篇
  国内免费   1篇
  2024年   3篇
  2023年   10篇
  2022年   23篇
  2021年   93篇
  2020年   68篇
  2019年   94篇
  2018年   123篇
  2017年   114篇
  2016年   165篇
  2015年   315篇
  2014年   298篇
  2013年   344篇
  2012年   405篇
  2011年   328篇
  2010年   269篇
  2009年   181篇
  2008年   246篇
  2007年   229篇
  2006年   223篇
  2005年   206篇
  2004年   176篇
  2003年   138篇
  2002年   129篇
  2001年   18篇
  2000年   22篇
  1999年   19篇
  1998年   24篇
  1997年   14篇
  1996年   12篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1979年   4篇
  1977年   2篇
  1976年   4篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
  1962年   1篇
排序方式: 共有4373条查询结果,搜索用时 31 毫秒
41.
A novel 3′,4′-dimethyl-5′-norcarbocyclic adenosine phosphonic acid was prepared using acyclic stereoselective route from 4-hydroxybutan-2-one (4). To improve the cellular permeability and enhance the anti-HIV activity of this phosphonic acid, a (bis)SATE phosphonodiester nucleoside prodrug (20) was prepared and its chemical stability was evaluated. The newly synthesized bis(SATE) analogue (20) and its parent nucleoside phosphonic acid (18) were assayed for anti-HIV activity using an in vitro assay system in a CEM cell line.  相似文献   
42.
The discovery of threosyl phosphonate nucleoside (PMDTA, EC50 = 2.53 μM) as a potent anti-HIV agent has led to the synthesis and biological evaluation of 5 ′-deoxyversions of threosyl phosphonate nucleosides from 1,4-dihydroxy-2-butene. The synthesized nucleoside phosphonic acid analogues 14 and 19 were tested for anti-HIV activity as well as cytotoxicity. The adenine analogue 14 exhibits moderate in vitro anti-HIV-1 activity (EC50 = 12.6 μM).  相似文献   
43.
Novel syntheses of 4′-modified cyclopentenyl pyrimidine C-nucleosides were performed via C-C bond formation using SN2 alkylation via the key intermediate mesylates 6 and 16, which were prepared from acyclic ketone derivatives. When antiviral evaluation of synthesized compound was performed against various viruses such as HIV-1, HSV-1 and HSV-2, isocytidine analogue 20 showed moderate anti-HIV activity in CEM cell line (EC50 = 13.1 μmol).7  相似文献   
44.
Novel vinyl branched apiosyl nucleosides were synthesized in this study. Apiosyl sugar moiety was constructed by sequential ozonolysis and reductions. The bases (uracil and thymine) were efficiently coupled by glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2, and HCMV. Compound 10β displayed moderate anti-HIV activity (EC50 = 17.3 μg/mL) without exhibiting any cytotoxicity up to 100 μM.  相似文献   
45.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   
46.
This study investigated the effect of glutamate decarboxylase from Neurospora crassa OR74A on GABA production in Escherichia coli. GABA is one of the inhibitory neurotransmitters in the mammalian central nervous system, and can be used as a precursor of promising biopolymer Nylon 4. E. coli that overexpressed N. crassa glutamate decarboxylase was cultured at various pH levels and temperatures to determine optimum conditions for GABA production. When the recombinant E. coli strain was cultured at 30°C and pH 3, a final GABA concentration of 5.26 g/L was obtained from 10 g/L of monosodium glutamate (MSG), corresponding to a GABA yield of 86.23%.  相似文献   
47.
Fires change the diversity and composition of insects in forest ecosystems. In the present study, we examined the change of butterfly communities after a fire including the increase of butterfly richness, grassland species, and generalist species, and more changed communities. Butterflies were surveyed for 5 years after the big Uljin fire in 2007. During each year, butterflies were counted monthly by the line transect method from April to October at two sites (burned vs. unburned, ~ 1.5 km routes). Specialist grassland species decreased in the year of the fire but generalist species did not increase significantly. Butterfly richness did not change but butterfly diversity decreased due to a sudden increase of a species, Polygonia c-aureum. The butterfly community in the year of the fire was different from those in later years, showing temporary change of community in the year of the fire. Species composition was significantly different between burned and unburned sites, but this phenomenon cannot be interpreted as an influence of fire due to highly variable species composition of local butterfly assemblages and the non-repetitive sampling site of the present study.  相似文献   
48.
Delphinidin, gallic acid, betulinic acid, and ursolic acid, which are bio-active ingredients in a variety of fruits, vegetables, and herbs, have potent antioxidant activity and various biological activities. However, it is not clear whether these bio-active ingredients can significantly contribute to the protection of embryonic stem (ES) cells from hypoxia-induced apoptosis. In the present study, hypoxia-induced ES cells apoptosis with time, which were abrogated by pretreatment with all ingredients. Hypoxia-induced ROS generation was blocked by pretreatment with all ingredients in a dose-dependent manner, with the maximum ROS scavenging effect observed for delphinidin. Hypoxia increased phosphorylation of JNK and NF-κB were blocked by pretreatment of delphinidin as well as NAC. Hypoxia decreased phosphorylation of Aktthr308 and ser473; these decreases were reversed by pretreatment with delphinidin or NAC. However, Akt inhibition did not affect NF-κB phosphorylation. Delphinidin attenuated the hypoxia-induced increase in Bax, cleaved caspase-9, cleaved caspase-3, and decrease in Bcl-2, which were diminished by pretreatment of Akt inhibitor. Hypoxia induced Bax translocation from the cytosol to mitochondria. Furthermore, hypoxia induced mitochondria membrane potential loss and cytochrome c release in cytosol, which were blocked by delphinidin pretreatment. Hypoxia induced cleavage of procaspase-9 and procaspase-3 which were blocked by delphinidin or SP600125, but Akt inhibitor abolished the protection effect of delphinidin. Moreover, inhibition of JNK and NF-κB abolished hypoxia-induced ES cell apoptosis and inhibition of Akt attenuated delphinidin-induced blockage of apoptosis. The results indicate that delphinidin can prevent hypoxia-induced apoptosis of ES cells through the inhibition of JNK and NF-κB phosphorylation, and restoration of Akt phosphorylation.  相似文献   
49.
A green, simple, and effective approach was performed to synthesize potent silver nanoparticles (SNPs) using bacterial exopolysaccharide as both a reducing and stabilizing agent. The synthesized SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier-transform-infrared spectra analyses. The SNPs varied in shape and were multidispersed with a mean diameter of 10 nm ranging from 2 to 15 nm and were stable up to 2 months at room temperature. The antimicrobial activity of the SNPs was analyzed against bacterial and fungal pathogens using the agar well diffusion method. Dose dependent inhibition was observed for all bacterial pathogens. The multidrug resistant pathogens P. aeruginosa and K. pneumonia were found to be more susceptible to the SNPs than the food borne pathogen L. monocytogenes. The fungi Aspergillus spp. exhibited a maximum zone of inhibition compared to that of Penicillum spp. These results suggest that exopolysaccharide-stabilized SNPs can be used as an antimicrobial agent for various biomedical applications.  相似文献   
50.
Background aimsMany rodent experiments and human studies on stem cell therapy have shown promising therapeutic approaches to liver diseases. We investigated the clinical outcomes of five patients with liver failure of various causes who received autologous CD34-depleted bone marrow-derived mononuclear cell (BM-MNC) transplantation, including mesenchymal stromal cells, through the hepatic artery.MethodsCD34-depleted BM-MNCs were obtained from five patients waiting for liver transplantation by bone marrow aspiration and using the CliniMACS CD34 Reagent System (Miltenyi Biotech, Bergisch Gladbach, Germany), and autologous hepatic artery infusion was performed. The causes of hepatic decompensation were hepatitis B virus (HBV), hepatitis C virus (HCV), propylthiouracil-induced toxic hepatitis and Wilson disease.ResultsSerum albumin levels improved 1 week after transplantation from 2.8 g/dL, 2.4 g/dL, 2.7 g/dL and 1.9 g/dL to 3.3 g/dL, 3.1 g/dL, 2.8 g/dL and 2.6 g/dL. Transient liver elastography data showed some change from 65 kPa, 33 kPa, 34.8 kPa and undetectable to 46.4 kPa, 19.8 kPa, 29.1 kPa and 67.8 kPa at 4 weeks after transplantation in a patient with Wilson disease, a patient with HCV, and two patients with HBV. Ascites decreased in two patients. One of the patients with HBV underwent liver transplantation 4 months after the infusion, and the hepatic progenitor markers (cytokeratin [CD]-7, CD-8, CD-9, CD-18, CD-19, c-Kit and epithelial cell adhesion molecule [EpCAM]) were highly expressed in the explanted liver.ConclusionsSerum albumin levels, liver stiffness, liver volume, subjective healthiness and quality of life improved in the study patients. Although these findings were observed in a small population, the results may suggest a promising future for autologous CD34-depleted BM-MNC transplantation as a bridge to liver transplantation in patients with liver failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号