首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   86篇
  2022年   3篇
  2021年   10篇
  2020年   2篇
  2019年   5篇
  2018年   15篇
  2017年   12篇
  2016年   21篇
  2015年   32篇
  2014年   41篇
  2013年   99篇
  2012年   50篇
  2011年   61篇
  2010年   26篇
  2009年   28篇
  2008年   51篇
  2007年   50篇
  2006年   40篇
  2005年   48篇
  2004年   38篇
  2003年   37篇
  2002年   42篇
  2001年   37篇
  2000年   35篇
  1999年   36篇
  1998年   8篇
  1997年   8篇
  1996年   12篇
  1995年   12篇
  1994年   6篇
  1993年   6篇
  1992年   29篇
  1991年   24篇
  1990年   13篇
  1989年   24篇
  1988年   15篇
  1987年   17篇
  1986年   21篇
  1985年   7篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   2篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1975年   2篇
  1974年   4篇
  1972年   3篇
  1968年   3篇
排序方式: 共有1094条查询结果,搜索用时 571 毫秒
71.
The homeobox protein, PEPP2 (RHOXF2), has been suggested as a cancer/testis (CT) antigen based on its expression pattern. However, the peptide epitope of PEPP2 that is recognized by cytotoxic T cells (CTLs) is unknown. In this study, we revealed that PEPP2 gene was highly expressed in myeloid leukemia cells and some other hematological malignancies. This gene was also expressed in leukemic stem-like cells. We next identified the first reported epitope peptide (PEPP2271-279). The CTLs induced by PEPP2271-279 recognized PEPP2-positive target cells in an HLA-A*24:02-restricted manner. We also found that a demethylating agent, 5-aza-2’-deoxycytidine, could enhance PEPP2 expression in leukemia cells but not in blood mononuclear cells from healthy donors. The cytotoxic activity of anti-PEPP2 CTL against leukemic cells treated with 5-aza-2’-deoxycytidine was higher than that directed against untreated cells. These results suggest a clinical rationale that combined treatment with this novel antigen-specific immunotherapy together with demethylating agents might be effective in therapy-resistant myeloid leukemia patients.  相似文献   
72.
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.  相似文献   
73.
Previously, eEF-2 phosphorylation has been identified as a reversible mechanism involved in the inhibition of the elongation phase of translation. In this study, an increased level of phosphorylation of eukaryotic elongation factor-2 (eEF-2) was observed in the brains and livers of hibernating ground squirrels. In brain and liver from hibernators, eEF-2 kinase activity was increased relative to that of active animals. The activity of protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates eEF-2, was also decreased in brain and liver from hibernators. This was associated with an increase in the level of inhibitor 2 of PP2A (I(2)(PP2A)), although there was an increase in the level of the catalytic subunit of PP2A (PP2A/C) in hibernating brains and livers. These results indicate that eEF-2 phosphorylation represents a specific and previously uncharacterized mechanism for inhibition of the elongation phase of protein synthesis during hibernation. Increased levels of eEF-2 phosphorylation in hibernators appear to be a component of the regulated shutdown of cellular functions that permits hibernating animals to tolerate severe reductions in cerebral blood flow and oxygen delivery capacity.  相似文献   
74.
The origin of modern humans can be traced by comparing polymorphic sites in either mitochondria or genomic sequences between humans and other primates. The human Y chromosome has both a non-recombining region and X-Y homologous pseudo-autosomal regions. In the nonrecombining region events during evolution can be directly detected. At least a part of homology between Xq21 and Yp11 is a result of rather recent translocations from the X chromosome to the Y chromosome. DNA markers residing in the nonrecombining region of the human Y chromosome are potentially useful in tracing male-specific gene flow in human evolution. However, the number of available markers in the region is limited. Here, we report a novel X-Y homologous (CA)n repeat locus in the nonrecombining region of the Y chromosome. This marker, DXYS241, has several interesting features. Y- and X-chromosome alleles are distinguishable because the Y-chromosome alleles are shorter than the X-chromosome alleles most of the time. We developed 2 primer sets for specific examination of Y- and X-chromosome alleles. The marker should be useful in establishing relationships between populations based on patrilineal gene flow. Sequences homologous to DXYS241 are also found on the X chromosome of primates. Four events during primate evolution that led to the modern human Y chromosome were identified.  相似文献   
75.
The hem gene cluster, which consists of hemA, cysG(B), hemC, hemD, hemB, and hemL genes, and encodes enzymes involved in the biosynthetic pathway from glutamyl-tRNA to uroporphyrinogen III, has been identified by the cloning and sequencing of two overlapping DNA fragments from Clostridium perfringens NCTC8237. The deduced amino acid sequence of the N-terminal region of C. perfringens HemD is homologous to those reported for the C-terminal region of Salmonella typhimurium CysG and Clostridium josui HemD. C. perfringens CysG(B) is a predicted 220-residue protein which shows homology to the N-terminal region of S. typhimurium CysG. Disruption of the cysG(B) gene in C. perfringens strain 13 by homologous recombination reduced cobalamin (vitamin B12) levels by a factor of 200. When grown in vitamin B12-deficient medium, the mutant strain showed a four-fold increase in its doubling time compared with that of the wild-type strain, and this effect was counteracted by supplementing the medium with vitamin B12. These results suggest that C. perfringens CysG(B) is involved in the chelation of cobalt to precorrin II as suggested for the CysG(B) domain of S. typhimurium CysG, enabling the synthesis of cobalamin.  相似文献   
76.
Ficolin is a collagenous lectin which plays a crucial role in innate immunity. Three and two ficolins have been identified in human and mice, respectively. To identify the mouse homologue of human H-ficolin and to elucidate the orthology between mouse ficolins A/B and human L-/M-ficolins, the gene structures were explored. The mouse homologue of the H-ficolin gene was identified as a pseudogene on chromosome 4. The mouse ficolin A gene was located far from the ficolin B gene on chromosome 2, whereas the human L-ficolin and M-ficolin genes were close in the region homologous to the ficolin B locus. Together with the exon-intron structures and the phylogenetic tree, these results suggest that ficolin B is the mouse orthologue of M-ficolin and that the genes encoding serum-type ficolins, ficolin A and L-ficolin, were generated independently from the ficolin B/M-ficolin lineage each in mice and primates.  相似文献   
77.
78.
The largest of the gene clusters coding for proteins involved in methanol oxidation is the cluster mxaFJGIR(S)ACKLDEHB. Disruption of most of these genes leads to lack of growth on methanol. The previous results showed that the mutant lacking MxaD grows on methanol although at a low rate. This is explained by the low rate of methanol oxidation by whole cells. The specific activity of methanol dehydrogenase (MDH) is higher in the mutant but its electron acceptor (cytochrome c(L)) is unchanged. Using the purified proteins, it was shown that the rate of interaction of MDH and cytochrome c(L) was higher in the wild-type MDH containing some MxaD proteins, which was absent in the mutant MDH. It is suggested that the gene mxaD codes for the 17-kDa periplasmic protein that directly or indirectly stimulates the interaction between MDH and cytochrome c(L); its absence leads to a lower rate of respiration with methanol and therefore a lower growth rate on this substrate.  相似文献   
79.
Membrane-bound glucose dehydrogenase (mGDH) in Escherichia coli is one of the pivotal pyrroloquinoline quinone (PQQ)-containing quinoproteins coupled with the respiratory chain in the periplasmic oxidation of alcohols and sugars in Gram-negative bacteria. We compared mGDH with other PQQ-dependent quinoproteins in molecular structure and attempted to trace their evolutionary process. We also review the role of residues crucial for the catalytic reaction or for interacting with PQQ and discuss the functions of two distinct domains, radical formation in PQQ, and the presumed existence of bound quinone in mGDH.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号