首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   156篇
  2023年   10篇
  2022年   28篇
  2021年   59篇
  2020年   26篇
  2019年   40篇
  2018年   49篇
  2017年   34篇
  2016年   58篇
  2015年   98篇
  2014年   96篇
  2013年   123篇
  2012年   173篇
  2011年   161篇
  2010年   93篇
  2009年   70篇
  2008年   106篇
  2007年   105篇
  2006年   103篇
  2005年   100篇
  2004年   77篇
  2003年   79篇
  2002年   58篇
  2001年   23篇
  2000年   17篇
  1999年   20篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   13篇
  1986年   9篇
  1985年   11篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   7篇
  1976年   6篇
  1975年   5篇
  1974年   10篇
  1973年   10篇
  1969年   4篇
  1967年   5篇
排序方式: 共有2052条查询结果,搜索用时 93 毫秒
151.
Superantigens (SAGs) bind simultaneously to major histocompatibility complex (MHC) and T-cell receptor (TCR) molecules, resulting in the massive release of inflammatory cytokines that can lead to toxic shock syndrome (TSS) and death. A major causative agent of TSS is toxic shock syndrome toxin-1 (TSST-1), which is unique relative to other bacterial SAGs owing to its structural divergence and its stringent TCR specificity. Here, we report the crystal structure of TSST-1 in complex with an affinity-matured variant of its wild-type TCR ligand, human T-cell receptor beta chain variable domain 2.1. From this structure and a model of the wild-type complex, we show that TSST-1 engages TCR ligands in a markedly different way than do other SAGs. We provide a structural basis for the high TCR specificity of TSST-1 and present a model of the TSST-1-dependent MHC-SAG-TCR T-cell signaling complex that is structurally and energetically unique relative to those formed by other SAGs. Our data also suggest that protein plasticity plays an exceptionally significant role in this affinity maturation process that results in more than a 3000-fold increase in affinity.  相似文献   
152.
153.
Human eosinophil-derived neurotoxin (EDN) or RNase 2, found in the non-core matrix of eosinophils is a ribonuclease belonging to the Ribonuclease A superfamily. EDN manifests a number of bioactions including neurotoxic and antiviral activities, which are dependent on its ribonuclease activity. The core of the catalytic site of EDN contains various base and phosphate-binding subsites. Unlike many members of the RNase A superfamily, EDN contains an additional non-catalytic phosphate-binding subsite, P−1. Although RNase A also contains a P−1 subsite, the composition of the site in EDN and RNase A is different. In the current study we have generated site-specific mutants to study the role of P−1 subsite residues Arg36, Asn39, and Gln40 of EDN in its catalytic activity. The individual mutation of Arg36, Asn 39, and Gln40 resulted in a reduction in the catalytic activity of EDN on poly(U) and poly(C). However, there was no change in the activities on yeast tRNA and dinucleotide substrates. The study shows that the P−1 subsite is crucial for the ribonucleolytic activity of EDN on polymeric RNA substrates. Deepa Sikriwal and Divya Seth contributed equally to this work.  相似文献   
154.
Circadian rhythm gene regulation in the housefly Musca domestica   总被引:1,自引:0,他引:1       下载免费PDF全文
The circadian mechanism appears remarkably conserved between Drosophila and mammals, with basic underlying negative and positive feedback loops, cycling gene products, and temporally regulated nuclear transport involving a few key proteins. One of these negative regulators is PERIOD, which in Drosophila shows very similar temporal and spatial regulation to TIMELESS. Surprisingly, we observe that in the housefly, Musca domestica, PER does not cycle in Western blots of head extracts, in contrast to the TIM protein. Furthermore, immunocytochemical (ICC) localization using enzymatic staining procedures reveals that PER is not localized to the nucleus of any neurons within the brain at any circadian time, as recently observed for several nondipteran insects. However, with confocal analysis, immunofluorescence reveals a very different picture and provides an initial comparison of PER/TIM-containing cells in Musca and Drosophila, which shows some significant differences, but many similarities. Thus, even in closely related Diptera, there is considerable evolutionary flexibility in the number and spatial organization of clock cells and, indeed, in the expression patterns of clock products in these cells, although the underlying framework is similar.  相似文献   
155.
Several pulmonary and neurological conditions, both in the newborn and adult, result in hypercapnia. This leads to disturbances in normal pH homeostasis. Most mammalian cells maintain tight control of intracellular pH (pH(i)) using a group of transmembrane proteins that specialize in acid-base transport. These acid-base transporters are important in adjusting pH(i) during acidosis arising from hypoventilation. We hypothesized that exposure to chronic hypercapnia induces changes in the expression of acid-base transporters. Neonatal and adult CD-1 mice were exposed to either 8% or 12% CO(2) for 2 wk. We used Western blot analysis of membrane protein fractions from heart, kidney, and various brain regions to study the response of specific acid-base transporters to CO(2). Chronic CO(2) increased the expression of the sodium hydrogen exchanger 1 (NHE1) and electroneutral sodium bicarbonate cotransporter (NBCn1) in the cerebral cortex, heart, and kidney of neonatal but not adult mice. CO(2) increased the expression of electrogenic NBC (NBCe1) in the neonatal but not the adult mouse heart and kidney. Hypercapnia decreased the expression of anion exchanger 3 (AE3) in both the neonatal and adult brain but increased AE3 expression in the neonatal heart. We conclude that: 1) chronic hypercapnia increases the expression of the acid extruders NHE1, NBCe1 and NBCn1 and decreases the expression of the acid loader AE3, possibly improving the capacity of the cell to maintain pH(i) in the face of acidosis; and 2) the heterogeneous response of tissues to hypercapnia depends on the level of CO(2) and development.  相似文献   
156.
Isosteres of cryptolepine (1) were synthesized and evaluated for their antiinfective activities. Overall, the sulfur isostere, 5-methyl benzothieno[3,2-b]quinolinium salt (5b), was equipotent to 1 and has shown no cytotoxicity at 23.8 microg/mL. Compound 5b was also found to have a broad spectrum of activity. Both the carbon and oxygen isosteres were less potent than cryptolepine. A limited library of 2-substituted analogs of 5b has been synthesized and evaluated in antifungal screens but did not show increase in potency compared to the unsubstituted 5b. Similarly, evaluation of tricyclic benzothieno[3,2-b]pyridines while showing promise in individual screens did not produce an overall increase in potency. Overall, the evaluation of the activities of 5b compared with standard antifungal/anti-protozoal agents suggests that the benzothienoquinoline scaffold could serve as a lead for optimization.  相似文献   
157.
This paper reviews the central concepts and implementation of data structures and methods for studying genetics of gene expression with the GGtools package of Bioconductor. Illustration with a HapMap+expression dataset is provided. Availability: Package GGtools is part of Bioconductor 1.9 (http://bioconductor.org). Open source with Artistic License.  相似文献   
158.
Genetic defects of anion exchanger 1 (AE1) may lead to spherocytic erythrocyte morphology, severe hemolytic anemia, and/or cation leak. In normal erythrocytes, osmotic shock, Cl removal, and energy depletion activate Ca2+-permeable cation channels with Ca2+-induced suicidal erythrocyte death, i.e., surface exposure of phosphatidylserine, cell shrinkage, and membrane blebbing, all features typical for apoptosis of nucleated cells. The present experiments explored whether AE1 deficiency favors suicidal erythrocyte death. Peripheral blood erythrocyte numbers were significantly smaller in gene-targeted mice lacking AE1 (AE1–/– mice) than in their wild-type littermates (AE1+/+ mice) despite increased percentages of reticulocytes (AE1–/–: 49%, AE1+/+: 2%), an indicator of enhanced erythropoiesis. Annexin binding, reflecting phosphatidylserine exposure, was significantly larger in AE1–/–erythrocytes/reticulocytes (10%) than in AE1+/+ erythrocytes (1%). Osmotic shock (addition of 400 mM sucrose), Cl removal (replacement with gluconate), or energy depletion (removal of glucose) led to significantly stronger annexin binding in AE1–/– erythrocytes/reticulocytes than in AE1+/+ erythrocytes. The increase of annexin binding following exposure to the Ca2+ ionophore ionomycin (1 µM) was, however, similar in AE1–/– and in AE1+/+ erythrocytes. Fluo3 fluorescence revealed markedly increased cytosolic Ca2+ permeability in AE1–/– erythrocytes/reticulocytes. Clearance of carboxyfluorescein diacetate succinimidyl ester-labeled erythrocytes/reticulocytes from circulating blood was more rapid in AE1–/– mice than in AE1+/+ mice and was accelerated by ionomycin treatment in both genotypes. In conclusion, lack of AE1 is associated with enhanced Ca2+ entry and subsequent scrambling of cell membrane phospholipids. annexin; cell volume; osmolarity; phosphatidylserine; energy depletion  相似文献   
159.
Expression of uncoupling protein 1 (Ucp1) mRNA is elevated in differentiated adipocytes derived from brown or white adipose tissue devoid of the nuclear receptor corepressor receptor interacting protein 140 (RIP140). Increased expression is mediated in part by the recruitment of peroxisome proliferator activated receptors alpha and gamma, together with estrogen-related receptor alpha, which functions through a novel binding site on the Ucp1 enhancer. This demonstrates that regulation of Ucp1 expression in the absence of RIP140 involves derepression of at least three different nuclear receptors. The ability to increase expression of Ucp1 by beta-adrenergic signaling is independent of RIP140, as shown by the action of the beta(3)-adrenergic agonist CL 316,243 to stimulate expression in both brown and white adipocytes in the presence and absence of the corepressor. Therefore, the expression of this metabolic uncoupling protein in adipose cells is regulated by inhibition as well as activation of distinct signaling pathways.  相似文献   
160.
The manganese transport regulator (MntR) of Bacillus subtilis is a metalloregulatory protein responsible for regulation of genes involved in manganese uptake by this organism. MntR belongs to the iron-responsive DtxR family, but is allosterically regulated by manganese and cadmium ions. Having previously characterized the metal binding affinities of this protein as well as the DNA-binding activation profiles for the relevant metal ions, we have focused the current study on investigating the structural changes of MntR in solution upon binding divalent transition metal ions. Deuterium exchange mass spectrometry was utilized to investigate the deuterium exchange dynamics between apo-MntR, Co2+-MntR, Cd2+-MntR, and Mn2+-MntR. Comparing the rates of deuteration of each metal-bound form of MntR reveals that the N-terminal DNA-binding motif is more mobile in solution than the C-terminal dimerization domain. Furthermore, significant protection from deuterium exchange is observed in the helices that contribute metal-chelating amino acids to form the metal binding site of MntR. In contrast, the bulk of the DNA-binding winged helix–turn–helix motif shows no difference in deuterium exchange upon metal binding. Mapping of the deuteration patterns onto the crystal structures of MntR yields insight into how metal binding affects the protein structure and complements earlier studies on the mechanism of MntR. Metal binding acts to rigidify MntR, thereby limiting the mobility of the protein and reducing the entropic cost of DNA binding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号