首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   180篇
  2023年   10篇
  2022年   23篇
  2021年   60篇
  2020年   30篇
  2019年   42篇
  2018年   50篇
  2017年   35篇
  2016年   61篇
  2015年   105篇
  2014年   104篇
  2013年   136篇
  2012年   181篇
  2011年   180篇
  2010年   101篇
  2009年   78篇
  2008年   114篇
  2007年   117篇
  2006年   110篇
  2005年   110篇
  2004年   90篇
  2003年   92篇
  2002年   63篇
  2001年   28篇
  2000年   25篇
  1999年   25篇
  1998年   15篇
  1997年   8篇
  1996年   15篇
  1995年   8篇
  1994年   9篇
  1992年   15篇
  1991年   15篇
  1990年   16篇
  1989年   17篇
  1988年   12篇
  1987年   16篇
  1986年   13篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1976年   8篇
  1975年   6篇
  1974年   12篇
  1973年   13篇
  1971年   6篇
排序方式: 共有2289条查询结果,搜索用时 15 毫秒
91.
92.
The extent and pattern of glycosylation on therapeutic antibodies can influence their circulatory half-life, engagement of effector functions, and immunogenicity, with direct consequences to efficacy and patient safety. Hence, controlling glycosylation patterns is central to any drug development program, yet poses a formidable challenge to the bio-manufacturing industry. Process changes, which can affect glycosylation patterns, range from manufacturing at different scales or sites, to switching production process mode, all the way to using alternative host cell lines. In the emerging space of biosimilars development, often times all of these aspects apply. Gaining a deep understanding of the direction and extent to which glycosylation quality attributes can be modulated is key for efficient fine-tuning of glycan profiles in a stage appropriate manner, but establishment of such platform knowledge is time consuming and resource intensive. Here we report an inexpensive and highly adaptable screening system for comprehensive modulation of glycans on antibodies expressed in CHO cells. We characterize 10 media additives in univariable studies and in combination, using a design of experiments approach to map the design space for tuning glycosylation profile attributes. We introduce a robust workflow that does not require automation, yet enables rapid process optimization. We demonstrate scalability across deep wells, shake flasks, AMBR-15 cell culture system, and 2 L single-use bioreactors. Further, we show that it is broadly applicable to different molecules and host cell lineages. This universal approach permits fine-tuned modulation of glycan product quality, reduces development costs, and enables agile implementation of process changes throughout the product lifecycle.  相似文献   
93.
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and screen a library of CPS mutants for the presence of MeOPN. Sixty eight percent of C. jejuni strains were found to express the MeOPN with a high prevalence among isolates from enteritis, Guillain Barré, and Miller-Fisher syndrome patients. In contrast, MeOPN was not observed for any of the Campylobacter coli strains examined. The MeOPN was detected on C. jejuni retrieved from cecal contents of colonized chickens demonstrating that the modification is expressed by bacteria inhabiting the avian gastrointestinal tract. In C. jejuni 11168H, the cj1415-cj1418 cluster was shown to be involved in the biosynthesis of MeOPN. Genetic complementation studies and NMR/mass spectrometric analyses of CPS from this strain also revealed that cj1421 and cj1422 encode MeOPN transferases. Cj1421 adds the MeOPN to C-3 of the beta-d-GalfNAc residue, whereas Cj1422 transfers the MeOPN to C-4 of D-glycero-alpha-L-gluco-heptopyranose. CPS produced by the 11168H strain was found to be extensively modified with variable MeOPN, methyl, ethanolamine, and N-glycerol groups. These findings establish the importance of the MeOPN as a diagnostic marker and therapeutic target for C. jejuni and set the groundwork for future studies aimed at the detailed elucidation of the MeOPN biosynthetic pathway.  相似文献   
94.
Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing glutamate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH(2) terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function.  相似文献   
95.
The role of the fibronectin IGD motif in stimulating fibroblast migration   总被引:1,自引:0,他引:1  
The motogenic activity of migration-stimulating factor, a truncated isoform of fibronectin (FN), has been attributed to the IGD motifs present in its FN type 1 modules. The structure-function relationship of various recombinant IGD-containing FN fragments is now investigated. Their structure is assessed by solution state NMR and their motogenic ability tested on fibroblasts. Even conservative mutations in the IGD motif are inactive or have severely reduced potency, while the structure remains essentially the same. A fragment with two IGD motifs is 100 times more active than a fragment with one and up to 10(6) times more than synthetic tetrapeptides. The wide range of potency in different contexts is discussed in terms of cryptic FN sites and cooperativity. These results give new insight into the stimulation of fibroblast migration by IGD motifs in FN.  相似文献   
96.
Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (approximately 200), a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis.  相似文献   
97.
98.
99.
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号