首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1942篇
  免费   161篇
  国内免费   2篇
  2023年   12篇
  2022年   31篇
  2021年   60篇
  2020年   27篇
  2019年   43篇
  2018年   50篇
  2017年   37篇
  2016年   60篇
  2015年   100篇
  2014年   99篇
  2013年   124篇
  2012年   176篇
  2011年   162篇
  2010年   95篇
  2009年   70篇
  2008年   108篇
  2007年   109篇
  2006年   104篇
  2005年   100篇
  2004年   78篇
  2003年   82篇
  2002年   61篇
  2001年   26篇
  2000年   18篇
  1999年   20篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1976年   6篇
  1975年   6篇
  1974年   10篇
  1973年   10篇
  1970年   5篇
  1967年   5篇
排序方式: 共有2105条查询结果,搜索用时 15 毫秒
71.
Grover  M.  Makkar  R.  Sehgal  A.  Seth  S. K.  Gupta  J.  Behl  T. 《Neurophysiology》2020,52(2):159-168
Neurophysiology - Diabetic neuropathy is a painful devitalizing complication of diabetes affecting almost 20% individuals with this disease. Based on the area where neurons are mostly affected, it...  相似文献   
72.
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50–60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24–28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.  相似文献   
73.
Vitamin B12 is an essential micronutrient synthesized by microorganisms. Mammals including humans have evolved ways for transport and absorption of this vitamin. Deficiency of vitamin B12 (either due to low intake or polymorphism in genes involved in absorption and intracellular transport of this vitamin) has been associated with various complex diseases. Genome-wide association studies have recently identified several common single nucleotide polymorphisms (SNPs) in fucosyl transferase 2 gene (FUT2) to be associated with levels of vitamin B12—the strongest association was with a non-synonymous SNP rs602662 in this gene. In the present study, we attempted to replicate the association of this SNP (rs602662) in an Indian population since a significant proportion has been reported to have low levels of vitamin B12 in this population. A total of 1146 individuals were genotyped for this SNP using a single base extension method and association with levels of vitamin B12 was assessed in these individuals. Regression analysis was performed to analyze the association considering various confounding factors like for age, sex, diet, hypertension, diabetes mellitus and coronary artery disease status. We found that the SNP rs602662 was significantly associated with the levels of vitamin B12 (p value < 0.0001). We also found that individuals adhering to a vegetarian diet with GG (homozygous major genotype) have significantly lower levels of vitamin B12 in these individuals. Thus, our study reveals that vegetarian diet along with polymorphism in the FUT2 gene may contribute significantly to the high prevalence of vitamin B12 deficiency in India.  相似文献   
74.
Genetic diversity has emerged as an important source of variation in the ecological properties of populations, but there are few studies of genetic diversity effects on colonisation processes. This relative scarcity of studies is surprising given the influence of colonisation on species coexistence, invasion, and population persistence. Here, we manipulated relatedness in experimental populations of colonising larvae in four sessile marine invertebrates. We then examined the influence of coloniser relatedness on the number, spatial arrangement and phenotype of colonisers following permanent settlement. Overall, relatedness influenced colonisation in all four species, but the effects of relatedness on colonisation differed among species. The variable responses of species to manipulations of relatedness likely reflect differences in intensity of inter‐ and intra‐specific competition among adults, as well as the differential consequences of larval behaviours for each species. Relatedness appears to play an underappreciated role in the colonisation process, and we recommend that future studies of genetic diversity effects consider not only adult stages – the focus of most work to date – but also the importance of genetic diversity in early life history stages.  相似文献   
75.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   
76.

Background and aims

In post mining landscapes as in the Lusatian region (Brandenburg, Germany), Pleistocene coarse-textured, sandy sediments are used for soil rehabilitation and land reclamation. The homogeneously-appearing initial soils are characterized by finer-textured soil clumps (fragments) of different sizes that are embedded in a sandy matrix. These soils with typical local-scale heterogeneity may serve as a model for studying how spatially-distributed soil fragments may be utilized by pioneering plant species. The aim of this study was to gain insight into the physical and chemical properties of sandy matrix and fragments that could possibly explain why embedded fragment may act as hot spots for root growth.

Methods

In 2009, three soil monoliths of dimension 50 cm?×?50 cm?×?50 cm that were exclusively vegetated by Lotus corniculatus L. planted in 2008 were studied. Each layer of 10 cm was sampled successively using a cubic metal frame with 10 cm edge length (25 samples per layer each with a volume of 1 l). The samples were analyzed for root biomass, root lengths and diameter, and for chemical and physical properties of sandy matrix and fragments.

Results

Bulk density, water contents, total carbon, total nitrogen, and plant available calcium contents were higher for the fragments compared to the sandy matrix. The roots of L. corniculatus were heterogeneously distributed in the monoliths. The root density distributions for the 1 L samples indicated a positive influence of fragments on directed root growth. Fragments embedded in the sandy matrix were found to be strongly penetrated by roots despite their relatively high bulk density. The presence of fragments also led to an increased root biomass in the sandy matrix in the direct vicinity of fragments. Such direct effects on root development were accompanied by more indirect effects by locally-elevated moisture and nutrient contents.

Conclusion

The results suggest that finer-textured fragments embedded in coarser-textured sediments, can have favorable effect on plant and root development during the initial stages of establishment of vegetation cover. The fragments can act as water and nutrient hot spots to improve supply of pioneering plants especially in coarse-textured soil. The existence of small-scale heterogeneities owing to incomplete sediment mixing e.g., in soil reclamation, could be generally important for controlling the speed and direction of early plants-establishment, for instance, in the succession of post-mining areas.  相似文献   
77.
The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nm) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.  相似文献   
78.
79.
The coexistence of abnormal keratinization and aberrant pigmentation in a number of cornification disorders has long suggested a mechanistic link between these two processes. Here, we deciphered the genetic basis of Cole disease, a rare autosomal-dominant genodermatosis featuring punctate keratoderma, patchy hypopigmentation, and uncommonly, cutaneous calcifications. Using a combination of exome and direct sequencing, we showed complete cosegregation of the disease phenotype with three heterozygous ENPP1 mutations in three unrelated families. All mutations were found to affect cysteine residues in the somatomedin-B-like 2 (SMB2) domain in the encoded protein, which has been implicated in insulin signaling. ENPP1 encodes ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which is responsible for the generation of inorganic pyrophosphate, a natural inhibitor of mineralization. Previously, biallelic mutations in ENPP1 were shown to underlie a number of recessive conditions characterized by ectopic calcification, thus providing evidence of profound phenotypic heterogeneity in ENPP1-associated genetic diseases.  相似文献   
80.
Blending disciplines can be transformative in science, yet interdisciplinary mergers should not escape healthy skepticism. Indeed, the history of biology shows us that debates about the relative importance of nuclear genetics vs. microbial symbiosis in eukaryotic biology are among the most engaging. Today's technology may help resolve this century old debate as it illuminates the interwoven genomics and functions of symbionts with their host genome. Thus, we can now assert that all subdisciplines of zoology require microbiology. Although controversial to some, the evidence from studies of host-associated microbial communities indicates that metazoans are hologenomes – interconnected compositions of animal and microbes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号