首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1914篇
  免费   158篇
  2072篇
  2023年   12篇
  2022年   31篇
  2021年   59篇
  2020年   26篇
  2019年   40篇
  2018年   49篇
  2017年   34篇
  2016年   58篇
  2015年   99篇
  2014年   96篇
  2013年   123篇
  2012年   173篇
  2011年   161篇
  2010年   93篇
  2009年   70篇
  2008年   106篇
  2007年   108篇
  2006年   103篇
  2005年   100篇
  2004年   77篇
  2003年   79篇
  2002年   58篇
  2001年   23篇
  2000年   20篇
  1999年   20篇
  1998年   11篇
  1997年   8篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   13篇
  1986年   9篇
  1985年   11篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   8篇
  1976年   6篇
  1975年   5篇
  1974年   10篇
  1973年   11篇
  1969年   4篇
  1967年   5篇
排序方式: 共有2072条查询结果,搜索用时 0 毫秒
991.
Causal networks in simulated neural systems   总被引:1,自引:1,他引:0  
Neurons engage in causal interactions with one another and with the surrounding body and environment. Neural systems can therefore be analyzed in terms of causal networks, without assumptions about information processing, neural coding, and the like. Here, we review a series of studies analyzing causal networks in simulated neural systems using a combination of Granger causality analysis and graph theory. Analysis of a simple target-fixation model shows that causal networks provide intuitive representations of neural dynamics during behavior which can be validated by lesion experiments. Extension of the approach to a neurorobotic model of the hippocampus and surrounding areas identifies shifting causal pathways during learning of a spatial navigation task. Analysis of causal interactions at the population level in the model shows that behavioral learning is accompanied by selection of specific causal pathways—“causal cores”—from among large and variable repertoires of neuronal interactions. Finally, we argue that a causal network perspective may be useful for characterizing the complex neural dynamics underlying consciousness.
Anil K. SethEmail:
  相似文献   
992.
Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is a need for exogenous synthetic probes that can selectively target bacteria. The focus of this study is a fluorescent imaging probe that is composed of a bacterial affinity group conjugated to a near-infrared dye. The affinity group is a synthetic zinc (II) coordination complex that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 x 10 (7) cells) in a mouse leg infection model using whole animal near-infrared fluorescence imaging. Region of interest analysis showed that the signal ratio for infected leg to uninfected leg reaches 3.9 +/- 0.5 at 21 h postinjection of the probe. Ex vivo imaging of the organs produced a signal ratio of 8 for infected to uninfected leg. Immunohistochemical analysis confirmed that the probe targeted the bacterial cells in the infected tissue. Optimization of the imaging filter set lowered the background signal due to autofluorescence and substantially improved imaging contrast. The study shows that near-infrared molecular probes are amenable to noninvasive optical imaging of localized S. aureus infection.  相似文献   
993.
It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.  相似文献   
994.
The Comet assay, a sensitive, rapid and non-invasive technique, measures DNA damage in individual cells and has found wide acceptance in epidemiological and biomonitoring studies to determine the DNA damage resulting from lifestyle, occupational and environmental exposure. The present study was undertaken to measure the basal level of DNA damage in a normal, healthy Indian male and female population. Out of the 230 volunteers included in this study, 124 were male and 106 were female. All the individuals belonged to a comparable socio-economic background and aged between 20 and 30 years. They were also matched for their smoking and dietary habits. The period of sample collection was also matched. The results revealed a statistically significant higher level of DNA damage in males when compared to females as evident by an increase in the Olive tail moment [3.76±1.21 (arbitrary units) for males as compared to 3.37±1.47 for females (P<0.05)], tail DNA (%) [10.2±2.96 for males as compared to 9.40±2.83 for females (P<0.05)] and tail length (μm) [59.65±9.23 for males and 49.57±14.68 for females (P<0.001)]. To our knowledge, this report has, for the first time demonstrated significant differences in the basal level of DNA damage between males and females in a normal healthy Indian population.  相似文献   
995.
996.
In this paper we demonstrate that signal propagation across a laminar sheet of recurrent neurons is maximised when two conditions are met. First, neurons must be in the so-called centre crossing configuration. Second, the network's topology and weights must be such that the network comprises strongly coupled nodes, yet lies within the weakly coupled regime. We develop tools from linear stability analysis with which to describe this regime in terms of the connectivity and weight strengths of a network. We use these results to examine the apparent tension between the sensitivity and instability of centre crossing networks.  相似文献   
997.
Genomic technologies have evolved from a minority interest to a set of generally applicable, powerful tools. Recent studies have demonstrated that such tools are of great use in studies of neural development, particularly when allied to advances in data analysis and methods for analyzing gene function.  相似文献   
998.
999.
1000.
Vertebrate hair cell systems receive innervation from efferent neurons in the brain. Here we report the responses of octavolateral efferent neurons that innervate the inner ear and lateral lines in a teleost fish, Dormitator latifrons, to directional linear accelerations, and compare them with the afferent responses from the saccule, the main auditory organ in the inner ear of this species. Efferent neurons responded to acoustic stimuli, but had significantly different response properties than saccular afferents. The efferents produced uniform, omnidirectional responses with no phase-locking. Evoked spike rates increased monotonically with stimulus intensity. Efferents were more broadly tuned and responsive to lower frequencies than saccular afferents, and efferent modulation of the otolithic organs and lateral lines is likely more pronounced at lower frequencies. The efferents had wide dynamic ranges, shallow rate-level function slopes, and low maximum discharge rates. These findings support the role of the efferent innervation of the otolithic organs as part of a general arousal system that modulates overall sensitivity of the peripheral octavolateral organs. In addition, efferent feedback may help unmask biologically relevant directional stimuli, such as those emitted by a predator, prey, or conspecific, by reducing sensitivity of the auditory system to omnidirectional ambient noise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号