首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   20篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   7篇
  2011年   13篇
  2010年   4篇
  2009年   8篇
  2008年   9篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   8篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1971年   2篇
  1928年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
111.
A common overlapping site on the N-terminal IgV-like domain of human carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) is targeted by several important human respiratory pathogens. These include Neisseria meningitidis (Nm) and Haemophilus influenzae (Hi) that can cause disseminated or persistent localized infections. To define the precise structural features that determine the binding of distinct pathogens with CEACAMs, we have undertaken molecular modelling and mutation of the receptor molecules at previously implicated key target residues required for bacterial binding. These include Ser-32, Tyr-34, Val-39, Gln-44 and Gln-89, in addition to Ile-91, the primary docking site for the pathogens. Most, but not all, of these residues located adjacent to each other in a previous N-domain model of human CEACAM1, which was based on REI, CD2 and CD4. In the current studies, we have refined this model based on the mouse CEACAM1 crystal structure, and observe that all of the above residues form an exposed continuous binding region on the N-domain. Examination of the model also suggested that substitution of two of these residues 34 and 89 could affect the accessibility of Ile-91 for ligand binding. By introducing selected mutations at the positions 91, 34 and 89, we confirmed the primary importance of Ile-91 in all bacterial binding to CEACAM1 despite the inter- and intraspecies structural differences between the bacterial CEACAM-binding ligands. The studies further indicated that the efficiency of binding was significantly enhanced for specific strains by mutations such as Y34F and Q89N, which also altered the hierarchy of Nm versus Hi strain binding. These studies imply that distinct polymorphisms in human epithelial CEACAMs have the potential to decrease or increase the risk of infection by the receptor-targeting pathogens.  相似文献   
112.
Current methods for reengineering enzyme substrate specificities rely heavily on the use of static x-ray crystallographic models. In this article we detail the use of a molecular mechanics approach for suggesting regions of Bacillus stearothermophilus L-lactate dehydrogenase (EC 1.1.1.27) involved in substrate specificity, and hence areas of interest for protein engineers. The approach combines molecular dynamics with energy minimization (MD/EM) to search the conformational space available to a 15-Å sphere of the ternary complex centered on the catalytic histidine. The search is carried out by calculating a 30-ps dynamics trajectory at 300 K and minimizing structures at 1-ps intervals. The protocol has been performed on 14 systems containing different combinations of substrate and mutant /wt LDH. In order to discover which interactions are important in defining substrate specificity, eight conformational parameters representing substrate–active site interactions were measured in each of the 420 minimized structures. These parameters were then compared to the measured catalytic activity of the protein–substrate combinations. These comparisons show that arginine 109 orientation is a major determining factor in LDH specificity. Using this methodolgy it is possible to estimate the catalytic activity of proteins of varied sequence by computer simulation before synthesis. Proteins 29:228–239, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
113.
An homology model of Candida methylica formate dehydrogenase (cmFDH) was constructed based on the Pseudomonas sp. 101 formate dehydrogenase (psFDH) structure. An aspartic acid residue in the model was predicted to interact with the adenine ribose of the NAD cofactor, in common with many NAD-dependent oxoreductases. Replacement of this aspartic acid residue by serine in cmFDH removed the absolute requirement for NAD over NADP shown by the wild type enzyme. Taken with similar results shown by d- and l-lactate dehydrogenases, this suggests that an aspartic acid in this position is a major determinant of coenzyme specificity in NAD/NADP-dependent dehydrogenases.  相似文献   
114.
115.
MOTIVATION: Monte Carlo methods are the most effective means of exploring the energy landscapes of protein folding. The rugged topography of folding energy landscapes causes sampling inefficiencies however, particularly at low, physiological temperatures. RESULTS: A hybrid Monte Carlo method, termed density guided importance sampling (DGIS), is presented that overcomes these sampling inefficiencies. The method is shown to be highly accurate and efficient in determining Boltzmann weighted structural metrics of a discrete off-lattice protein model. In comparison to the Metropolis Monte Carlo method, and the hybrid Monte Carlo methods, jump-walking, smart-walking and replica-exchange, the DGIS method is shown to be more efficient, requiring no parameter optimization. The method guides the simulation towards under-sampled regions of the energy spectrum and recognizes when equilibrium has been reached, avoiding arbitrary and excessively long simulation times. AVAILABILITY: Fortran code available from authors upon request. CONTACT: m.j.parker@leeds.ac.uk.  相似文献   
116.
Molecular fossils of 2-methylhopanoids are prominent biomarkers in modern and ancient sediments that have been used as proxies for cyanobacteria and their main metabolism, oxygenic photosynthesis. However, substantial culture and genomic-based evidence now indicates that organisms other than cyanobacteria can make 2-methylhopanoids. Because few data directly address which organisms produce 2-methylhopanoids in the environment, we used metagenomic and clone library methods to determine the environmental diversity of hpnP, the gene encoding the C-2 hopanoid methylase. Here we show that hpnP copies from alphaproteobacteria and as yet uncultured organisms are found in diverse modern environments, including some modern habitats representative of those preserved in the rock record. In contrast, cyanobacterial hpnP genes are rarer and tend to be localized to specific habitats. To move beyond understanding the taxonomic distribution of environmental 2-methylhopanoid producers, we asked whether hpnP presence might track with particular variables. We found hpnP to be significantly correlated with organisms, metabolisms and environments known to support plant–microbe interactions (P-value<10−6); in addition, we observed diverse hpnP types in closely packed microbial communities from other environments, including stromatolites, hot springs and hypersaline microbial mats. The common features of these niches indicate that 2-methylhopanoids are enriched in sessile microbial communities inhabiting environments low in oxygen and fixed nitrogen with high osmolarity. Our results support the earlier conclusion that 2-methylhopanoids are not reliable biomarkers for cyanobacteria or any other taxonomic group, and raise the new hypothesis that, instead, they are indicators of a specific environmental niche.  相似文献   
117.
The mutation S163L in human heart lactate dehydrogenase removes substrate inhibition while only modestly reducing the turnover rate for pyruvate. Since this is the third enzyme to show this behaviour, we suggest that the S163L mutation is a general method for the removal of substrate inhibition in L-LDH enzymes. Engineering such enzymatic properties has clear industrial applications in the use of these enzymes to produce enantiomerically pure alpha-hydroxy acids. The mutation leads to two principal effects. (1) Substrate inhibition is caused by the formation of a covalent adduct between pyruvate and the oxidized form of the cofactor. The inability of S163L mutants to catalyse the formation of this inhibitory adduct is demonstrated. However, NMR experiments show that the orientation of the nicotinamide ring in the mutant NAD+ binary complex is not perturbed. (2) The mutation also leads to a large increase in the KM for pyruvate. The kinetic and binding properties of S163L LDH mutants are accounted for by a mechanism which invokes a non-productive, bound form of the cofactor. Molecular modelling suggests a structure for this non-productive enzyme-NADH complex.  相似文献   
118.
Regulation of atrial natriuretic hormone (ANH) receptor binding and aldosterone suppression was studied in isolated adrenal glomerulosa cells from rats fed a high-salt (HS) or low-salt (LS) diet for 3 days. In plasma of HS rats, aldosterone levels were 5 times lower and immunoreactive ANH two times higher than in LS rats. Competitive binding studies showed the same affinity for human atrial natriuretic hormone (hANH) in both pools of cells, but receptor density was 50% higher on LS cells. A linear ANH analog that binds to non-guanylate-cyclase-coupled receptors did not show increased binding to LS cells. Cyclic GMP production in response to hANH was identical in both groups. The aldosterone-inhibitory effect of hANH on both groups of basal and angiotensin II-stimulated cells was also identical. Thus a short-term high-salt diet causes decreased density of ANH receptors in glomerulosa cells without changing biological activity of ANH. These results suggest that dietary salt content changes the number of ANH receptors and that non-guanylate-cyclase-coupled receptors contain at least two classes of receptors.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号