首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1776篇
  免费   199篇
  2022年   17篇
  2021年   31篇
  2020年   36篇
  2019年   35篇
  2018年   46篇
  2017年   29篇
  2016年   58篇
  2015年   81篇
  2014年   88篇
  2013年   104篇
  2012年   137篇
  2011年   108篇
  2010年   85篇
  2009年   83篇
  2008年   96篇
  2007年   101篇
  2006年   87篇
  2005年   76篇
  2004年   86篇
  2003年   70篇
  2002年   70篇
  2001年   59篇
  2000年   46篇
  1999年   44篇
  1998年   18篇
  1997年   14篇
  1996年   15篇
  1995年   18篇
  1994年   16篇
  1993年   9篇
  1992年   29篇
  1991年   17篇
  1990年   21篇
  1989年   17篇
  1988年   20篇
  1987年   12篇
  1986年   19篇
  1985年   10篇
  1984年   4篇
  1983年   7篇
  1981年   7篇
  1980年   5篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   3篇
  1974年   5篇
  1972年   3篇
  1971年   2篇
  1967年   4篇
排序方式: 共有1975条查询结果,搜索用时 15 毫秒
81.
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.  相似文献   
82.
Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10−5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 103 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.  相似文献   
83.
84.

Sirtuins are NAD+-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. Sirt7 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, Sirt7 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. Sirt7 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, Sirt7 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.

  相似文献   
85.
Plant Cell, Tissue and Organ Culture (PCTOC) - Shake-flask in vitro culture of Buddleja cordata cells produces large amounts of biomass and synthetizes verbascoside (VB), linarin and...  相似文献   
86.
87.
The influence of an inserted exogenous independent folding element on the thermodynamics and folding properties of SH3 domain from alpha-spectrin has been investigated by creating a fused form between this small all-beta domain and a stable beta-hairpin (BH19). NMR analysis of synthetic peptides shows that insertion of BH19 nucleates formation of the original natural beta-hairpin (distal loop) that is part of the SH3 folding nucleus. The resulting protein (Bergerac-SHH) is more stable, folds faster and contains an elongated hairpin protruding from the globular domain as determined by 2D-NMR. "Protein engineering" analysis of the inserted region shows that it is folded in the transition state. Interestingly, stabilisation by insertion of the distal loop region results in the appearance of a compact intermediate revealed by a curved chevron plot at low denaturant concentration. This effect is eliminated at low salt concentrations by a single mutation of a hydrophobic residue within BH19 sequence, which is most probably involved in non-native interactions. Local stabilisation by enlargement and reinforcement of the folding nucleus, global compaction by the addition of salt and non-native interactions are shown to contribute to the observed deviation from the two-state behaviour.  相似文献   
88.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   
89.
The yeast HAL2 gene encodes a lithium- and sodium-sensitive phosphatase that hydrolyses 3'-phosphoadenosine-5'-phosphate (PAP). Salt toxicity in yeast results from Hal2 inhibition and accumulation of PAP, which inhibits sulphate assimilation and RNA processing. We have investigated whether the model plant Arabidopsis thaliana contains sodium-sensitive PAP phosphatases. The Arabidopsis HAL2-like gene family is composed of three members: AtAHL and AtSAL2, characterized in the present work, and the previously identified AtSAL1. The AtAHL and AtSAL2 cDNAs complement the auxotrophy for methionine of the yeast hal2 mutant and the recombinant proteins catalyse the conversion of PAP to AMP in a Mg(2+)-dependent reaction sensitive to inhibition by Ca2+ and Li+. The PAP phosphatase activity of AtAHL is sensitive to physiological concentrations of Na+, whereas the activities of AtSAL1 and AtSAL2 are not. Another important difference is that AtAHL is very specific for PAP while AtSAL1 and AtSAL2 also act as inositol polyphosphate 1-phosphatases. AtAHL constitutes a novel type of sodium-sensitive PAP phosphatase which could act co-ordinately with plant sulphotransferases and serve as target of salt toxicity in plants.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号