首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   82篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2019年   18篇
  2018年   20篇
  2017年   25篇
  2016年   19篇
  2015年   42篇
  2014年   45篇
  2013年   51篇
  2012年   54篇
  2011年   54篇
  2010年   42篇
  2009年   27篇
  2008年   40篇
  2007年   44篇
  2006年   51篇
  2005年   42篇
  2004年   30篇
  2003年   26篇
  2002年   33篇
  2001年   34篇
  2000年   13篇
  1999年   21篇
  1998年   14篇
  1997年   12篇
  1996年   14篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   18篇
  1991年   14篇
  1990年   19篇
  1989年   14篇
  1988年   14篇
  1987年   15篇
  1986年   9篇
  1985年   12篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   10篇
  1978年   6篇
  1974年   9篇
  1971年   5篇
  1967年   3篇
  1964年   3篇
排序方式: 共有1052条查询结果,搜索用时 15 毫秒
151.
Acute oral administration of ethanol (3.2g/kg) to normal rats increased DOPAC levels and DOPA formation in the caudate nucleus but had no effect in the substantia nigra and frontal cortex and failed to modify dopamine (DA) levels in any of the above brain areas. Complete tolerance to the stimulant effect on DOPA formation developed after chronic ethanol administration (3.2g daily for 60 days). In chronically treated rats, 24 hrs after ethanol withdrawal, DA levels in the frontal cortex were 60% higher than in controls and were unchanged in the substantia nigra and caudate nucleus as were DOPAC levels in all areas studied. At this time, the administration of ethanol caused a long-lasting depletion of DA and a parallel increase of DOPAC levels in all areas analyzed. The results indicate that acute and chronic ethanol release DA stores but, in the acute condition, DA depletion is prevented by increased synthesis.  相似文献   
152.
153.
154.
155.
156.

Background

Inconsistent pear fruit ripening resulting from variable harvest maturity within tree canopies can contribute to postharvest losses through senescence and spoilage that would otherwise be effectively managed using crop protectant and storage regimes. Because those inconsistencies are likely based on metabolic differences, non-targeted metabolic profiling peel of ‘d’Anjou’ pears harvested from the external or internal canopy was used to determine the breadth of difference and link metabolites with canopy position during long-term controlled atmosphere storage.

Results

Differences were widespread, encompassing everything from expected distinctions in flavonol glycoside levels between peel of fruit from external and internal canopy positions to increased aroma volatile production and sucrose hydrolysis with ripening. Some of the most substantial differences were in levels of triterpene and phenolic peel cuticle components among which acyl esters of ursolic acid and fatty acyl esters of p-coumaryl alcohol were higher in the cuticle of fruit from external tree positions, and acyl esters of α-amyrin were elevated in peel of fruit from internal positions. Possibly the most substantial dissimilarities were those that were directly related to fruit quality. Phytosterol conjugates and sesquiterpenes related to elevated superficial scald risk were higher in pears from external positions which were to be potentially rendered unmarketable by superficial scald. Other metabolites associated with fruit aroma and flavor became more prevalent in external fruit peel as ripening progressed and, likewise, with differential soluble solids and ethylene levels, suggesting the final product not only ripens differentially but the final fruit quality following ripening is actually different based on the tree position.

Conclusions

Given the impact tree position appears to have on the most intrinsic aspects of ripening and quality, every supply chain management strategy would likely lead to diverse storage outcomes among fruit from most orchards, especially those with large canopies. Metabolites consistently associated with peel of fruit from a particular canopy position may provide targets for non-destructive pre-storage sorting used to reduce losses contributed by this inconsistency.
  相似文献   
157.
158.
Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.  相似文献   
159.
160.
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition‐induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high‐emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high‐emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号