首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   15篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   10篇
  2013年   13篇
  2012年   20篇
  2011年   20篇
  2010年   7篇
  2009年   7篇
  2008年   16篇
  2007年   16篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  1999年   1篇
  1992年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
141.
A wide range of non thermal biological effects of microwave radiation (MW) was revealed during the last decades. A number of reports showed evident hazardous effects of MW on embryo development in chicken. In this study, we aimed at elucidating the effects of MW emitted by a commercial model of GSM 900 MHz cell phone on embryo development in quails (Coturnix coturnix japonica) during both short and prolonged exposure. For that, fresh fertilized eggs were irradiated during the first 38 h or 14 days of incubation by a cell phone in "connecting" mode activated continuously through a computer system. Maximum intensity of incident radiation on the egg's surface was 0.2 μW/cm2.The irradiation led to a significant (p<0.001) increase in numbers of differentiated somites in 38-hour exposed embryos and to a significant (p<0.05) increase in total survival of embryos from exposed eggs after 14 days exposure. We hypothesized that observed facilitating effect was due to enhancement of metabolism in exposed embryos provoked via peroxidation mechanisms. Indeed, a level of thiobarbituric acid (TBA) reactive substances was significantly (p<0.05-0.001) higher in brains and livers of hatchlings from exposed embryos. Thus, observed effects of radiation from commercial GSM 900 MHz cell phone on developing quail embryos signify a possibility for non-thermal impact of MW on embryogenesis. We suggest that the facilitating effect of low doses of irradiation on embryo development can be explained by a hormesis effect induced by reactive oxygen species (ROS). Future studies need to be done to clarify this assumption.  相似文献   
142.
ABSTRACT: Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.  相似文献   
143.
Electrophilic nitrated lipids (nitroalkenes) are emerging as an important class of protective cardiovascular signaling molecules. Although species such as nitro-linoleate (LNO(2)) and nitro-oleate can confer acute protection against cardiac ischemic injury, their mechanism of action is unclear. Mild uncoupling of mitochondria is known to be cardioprotective, and adenine nucleotide translocase 1 (ANT1) is a key mediator of mitochondrial uncoupling. ANT1 also contains redox-sensitive cysteines that may be targets for modification by nitroalkenes. Therefore, in this study we tested the hypothesis that nitroalkenes directly modify ANT1 and that nitroalkene-mediated cardioprotection requires ANT1. Using biotin-tagged LNO(2) infused into intact perfused hearts, we obtained mass spectrometric (MALDI-TOF-TOF) evidence for direct modification (nitroalkylation) of ANT1 on cysteine 57. Furthermore, in a cell model of ischemia-reperfusion injury, siRNA knockdown of ANT1 inhibited the cardioprotective effect of LNO(2). Although the molecular mechanism linking ANT1-Cys(57) nitroalkylation and uncoupling is not yet known, these data suggest that ANT1-mediated uncoupling may be a mechanism for nitroalkene-induced cardioprotection.  相似文献   
144.

Background

There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.

Methodology/Principal Findings

To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide''s modulation of exofacial thiols.

Conclusions/Significance

Based on these data, we postulate that one component of parthenolide''s anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.  相似文献   
145.
Mitogen-activated protein kinase (MAPK) pathways can play a role in F-actin dynamics. In particular, the p38 MAPK/MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) pathway is involved in F-actin alternations. Previously, we showed that MK5 is implicated in F-actin rearrangement induced by the cAMP/cAMP-dependent protein kinase pathway in PC12 cells, while others found Hsp27 to be a good in vitro MK5 substrate. Here we demonstrate that MK5 can specifically interact with Hsp27 in vivo and can induce phosphorylation at serine residues 78 and 82 in cells. siRNA-mediated depletion of Hsp27 protein levels, as well as overexpression of the non-phosphorylatable Hsp27-3A mutant prevented forskolin-induced F-actin reorganization. While ectopic expression of a constitutive active MK5 mutant was sufficient to induce F-actin rearrangement in PC12 cells, co-expression of Hsp27-3A could ablate this process. Our results imply that MK5 is involved in Hsp27-controlled F-actin dynamics in response to activation of the cAMP-dependent protein kinase pathway. These findings render the MK5/Hsp27 connection into a putative therapeutic target for conditions with aberrant Hsp27 phosphorylation such as metastasis, cardiovascular diseases, muscle atrophy, autoimmune skin disease and neuropathology.  相似文献   
146.
147.
A number of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines were prepared and their 5-HT6 receptor binding affinity and ability to inhibit the functional cellular responses to serotonin were evaluated. 3-[(3-Chlorophenyl)sulfonyl]-N-(tetrahydrofuran-2-ylmethyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{5,26} appeared to be the most active in a functional assay (IC50 = 29.0 nM) and 3-(phenylsulfonyl)-N-(2-thienylmethyl) thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{1,28} demonstrated the greatest affinity in a 5-HT6 receptor radioligand binding assay (Ki = 1.7 nM). A screening of 5-HT2A and 5-HT2B receptor affinity revealed that 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines are highly selective 5-HT6 receptor ligands.  相似文献   
148.
Intersectin 1 (ITSN1) is a conserved adaptor protein implicated in endocytosis, regulation of actin cytoskeleton rearrangements and mitogenic signaling. Its expression is characterized by multiple alternative splicing. Here we show neuron-specific expression of ITSN1 isoforms containing exon 20, which encodes five amino acid residues in the first SH3 domain (SH3A). In vitro binding experiments demonstrated that inclusion of exon 20 changes the binding properties of the SH3A domain. Endocytic proteins dynamin 1 and synaptojanin 1 as well as GTPase-activating protein CdGAP bound the neuron-specific variant of the SH3A domain with higher affinity than ubiquitously expressed SH3A. In contrast, SOS1, a guanine nucleotide exchange factor for Ras, and the ubiquitin ligase Cbl mainly interact with the ubiquitously expressed isoform. These results demonstrate that alternative splicing leads to the formation of two pools of ITSN1 with potentially different properties in neurons, affecting ITSN1 function as adaptor protein.  相似文献   
149.
Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant "persistent" Na+ current called NaN. Nav1.9(-/-) nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation.  相似文献   
150.
Estrogen has a variety of neuroprotective effects but the molecular basis of its function is still mainly unclear. Estrogen receptor (ER) signaling is highly dependent on posttranslational modifications and the assembly of coactivator and corepressor complexes. Several proteins involved in ERα signaling have recently been found to be acetylated, including ERα itself and Hsp90, a key chaperone in the functional regulation of ERα. ERα complexes also contain histone deacetylases (HDAC) which repress transactivation. Our purpose was to clarify the role of protein acetylation and Hsp90 function in the ERE-mediated ERα signaling in neuronal HN10 cells. We observed that increasing protein/histone acetylation status with trichostatin A, a potent HDAC inhibitor, increased the 17β-estradiol (E2)-induced transactivation of ERE-driven luciferase in non-transfected cells, and even more extensively in pERα-transfected cells. E2-induced ERE-driven transactivation was blocked by ICI 182.780. Several ER antagonists, such as raloxifene and tamoxifen, were unresponsive. Valproate, an antiepileptic drug which is recently characterized as a HDAC inhibitor, was also able to potentiate the E2-induced ERE-transactivation. Inhibition of the function of Hsp90 chaperone with geldanamycin strongly inhibited the E2-induced ERE-transactivation. Overexpression of SIRT2 protein deacetylase did not inhibit the acetylation-potentiated ERE-driven transactivation indicating that SIRT2 deacetylase is not involved in ERα signaling. Our results reveal that ERα signaling is dependent on protein acetylation and epigenetic regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号