首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   15篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   10篇
  2013年   13篇
  2012年   20篇
  2011年   20篇
  2010年   6篇
  2009年   7篇
  2008年   16篇
  2007年   16篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  1999年   1篇
排序方式: 共有207条查询结果,搜索用时 281 毫秒
91.
Development of soft chemical processes for the synthesis of interfacial architectures with well-defined structural nano-motifs organized over large areas in two dimensions is an important branch of nanotechnology. The present study deals with the fabrication of gold nanostructures using size-selective chemical etching of continuous gold films on glass support with titanium and chromium adhesive layers. In this process, which is called self-passivated surface etching, a gold film is etched in the presence of citric acid, resulting in gold nanostructures adhering to the metal support. The size-controlled chemical dissolution of gold is driven by a competing reaction between self-organized passivation of surface nano-motifs by citric acid shells and soft etching by a nonoxidative composition containing hydrochloric acid and hydrogen peroxide in water. According to these results, the presence of a chemically stable adhesive layer (titanium), citric acid in solution, and agitation are critical factors to be considered. However, the nature of the adhesive layer is the most influential factor. The following technique presents a simple method for the rapid fabrication of a nanostructured gold substrate that has the ability to support both propagating and localized surface plasmon resonances simultaneously.  相似文献   
92.
We have compared structures of 78 proteins determined by both NMR and X-ray methods. It is shown that X-ray and NMR structures of the same protein have more differences than various X-ray structures obtained for the protein, and even more than various NMR structures of the protein. X-ray and NMR structures of 18 of these 78 proteins have obvious large-scale structural differences that seem to reflect a difference of crystal and solution structures. The other 60 pairs of structures have only small-scale differences comparable with differences between various X-ray or various NMR structures of a protein; we have analyzed these structures more attentively. One of the main differences between NMR and X-ray structures concerns the number of contacts per residue: (1) NMR structures presented in PDB have more contacts than X-ray structures at distances below 3.0 A and 4.5-6.5 A, and fewer contacts at distances of 3.0-4.5 A and 6.5-8.0 A; (2) this difference in the number of contacts is greater for internal residues than for external ones, and it is larger for beta-containing proteins than for all-alpha proteins. Another significant difference is that the main-chain hydrogen bonds identified in X-ray and NMR structures often differ. Their correlation is 69% only. However, analogous difference is found for refined and rerefined NMR structures, allowing us to suggest that the observed difference in interresidue contacts of X-ray and NMR structures of the same proteins is due mainly to a difference in mathematical treatment of experimental results.  相似文献   
93.
The leukocyte integrin alphaMbeta2 (Mac-1) is a multiligand receptor that mediates a range of adhesive reactions of leukocytes during the inflammatory response. This integrin binds the coagulation protein fibrinogen providing a key link between thrombosis and inflammation. However, the mechanism by which alphaMbeta2 binds fibrinogen remains unknown. Previous studies indicated that a model in which two fibrinogen gammaC domain sequences, P1 (gamma190-202) and P2 (gamma377-395), serve as the alphaMbeta2 binding sites cannot fully account for recognition of fibrinogen by integrin. Here, using surface plasmon resonance, we examined the interaction of the ligand binding alphaMI-domain of alphaMbeta2 with the D fragment of fibrinogen and showed that this ligand is capable of associating with several alphaMI-domain molecules. To localize the alternative alphaMI-domain binding sites, we screened peptide libraries covering the complete sequences of the gammaC and betaC domains, comprising the majority of the D fragment structure, for alphaMI-domain binding. In addition to the P2 and P1 peptides, the alphaMI-domain bound to many other sequences in the gammaC and betaC scans. Similar to P1 and P2, synthetic peptides derived from gammaC and betaC were efficient inhibitors of alphaMbeta2-mediated cell adhesion and were able to directly support adhesion suggesting that they contain identical recognition information. Analyses of recognition specificity using substitutional peptide libraries demonstrated that the alphaMI-domain binding depends on basic and hydrophobic residues. These findings establish a new model of alphaMbeta2 binding in which the alphaMI-domain interacts with multiple sites in fibrinogen and has the potential to recognize numerous sequences. This paradigm may have implications for mechanisms of promiscuity in ligand binding exhibited by integrin alphaMbeta2.  相似文献   
94.
Several novel 2-imino-5-hydroxymethyl-8-methyl-2H-pyrano[2,3-c]pyridine-3-(N-aryl) carboxamides were prepared by reaction of pyridoxal hydrochloride with various N-arylcyanoacetamides. Reaction of these compounds with aromatic amines furnished a wide series of 2-(N-R-phenyl) imino-5-hydroxymethyl-8-methyl-2H-pyrano[2,3-c]pyridine-3-carboxamides. Antibacterial and antifungal activities of the synthesized compounds were studied. Most of the obtained compounds demonstrated significant activity against bacterial or fungal strains (MIC in the range of 12.5–25 μg/mL), displaying comparable or even better efficacy than the standard drugs.  相似文献   
95.
96.
Influenza viruses are a global health concern because of the permanent threat of novel emerging strains potentially capable of causing pandemics. Viral ribonucleoproteins (vRNPs) containing genomic RNA segments, nucleoprotein oligomers, and the viral polymerase, play a central role in the viral replication cycle. Our knowledge about critical events such as vRNP assembly and interactions with other viral and cellular proteins is poor and could be substantially improved by time lapse imaging of the infected cells. However, such studies are limited by the difficulty to achieve live-cell compatible labeling of active vRNPs. Previously we designed the first unimpaired recombinant influenza WSN-PB2-GFP11 virus allowing fluorescent labeling of the PB2 subunit of the viral polymerase (Avilov et al., J.Virol. 2012). Here, we simultaneously labeled the viral PB2 protein using the above-mentioned strategy, and virus-encoded progeny RNPs through spontaneous incorporation of transiently expressed NP-mCherry fusion proteins during RNP assembly in live infected cells. This dual labeling enabled us to visualize progeny vRNPs throughout the infection cycle and to characterize independently the mobility, oligomerization status and interactions of vRNP components in the nuclei of live infected cells.  相似文献   
97.
We report the NMR solution structure of a synthetic 40-mer (T377-E416) that encompasses human cannabinoid receptor-1 (hCB1) transmembrane helix 7 (TMH7) and helix 8 (H8) [hCB1(TMH7/H8)] in 30% trifluoroethanol/H2O. Structural features include, from the peptide’s amino terminus, a hydrophobic α-helix (TMH7); a loop-like, 11 residue segment featuring a pronounced Pro-kink within the conserved NPxxY motif; a short amphipathic α-helix (H8) orthogonal to TMH7 with cationic and hydrophobic amino-acid clusters; and an unstructured C-terminal end. The hCB1(TMH7/H8) NMR solution structure suggests multiple electrostatic amino-acid interactions, including an intrahelical H8 salt bridge and a hydrogen-bond network involving the peptide’s loop-like region. Potential cation-π and cation-phenolic OH interactions between Y397 in the TMH7 NPxxY motif and R405 in H8 are identified as candidate structural forces promoting interhelical microdomain formation. This microdomain may function as a flexible molecular hinge during ligand-induced hCB1 conformer transitions.  相似文献   
98.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   
99.
Interaction of lipoprotein(a) with fibrin associated with atherosclerotic lesions promotes its accumulation in the lesions, thereby contributing to the development of atherothrombosis. Numerous studies revealed that this interaction occurs through the apolipoprotein(a) [apo(a)] component of lipoprotein(a) and COOH-terminal Lys residues generated by partial degradation of fibrin with plasmin (a COOH-Lys-dependent mechanism). At the same time, the mechanism of the interaction of apo(a) with intact fibrin(ogen) remained unclear. Our recent study identified the Lys-independent apo(a)-binding sites within the fibrin(ogen) alphaC domains which contribute to an alternative Lys-independent mechanism. In this study, we performed direct measurements of the interaction between apo(a) and various fibrin(ogen) fragments representing the whole fibrin(ogen) molecule except the alphaC regions. The experiments revealed that the apo(a)-binding site, identified previously within fibrinogen gamma chain residues 207-235 [Klose, R., et al. (2000) J. Biol. Chem. 275, 38206-38212], is a high-affinity site and mainly Lys-independent, suggesting that it should also contribute to the Lys-independent mechanism. The experiments also identified a novel Lys-dependent high-affinity apo(a)-binding site within the sequence of gamma chain residues 287-411. This site may provide interaction of apo(a) with intact fibrin(ogen) through another alternative mechanism, which depends on internal Lys residues. Thus, apo(a) may interact with intact fibrin through the Lys-independent and Lys-dependent mechanisms, while the COOH-Lys-dependent mechanism may prevail in the presence of fibrinolytic activity.  相似文献   
100.
Hemifluorinated compounds, such as HF-TAC, make up a novel class of nondetergent surfactants designed to keep membrane proteins soluble under nondissociating conditions [Breyton, C., et al. (2004) FEBS Lett. 564, 312]. Because fluorinated and hydrogenated chains do not mix well, supramicellar concentrations of these surfactants can coexist with intact lipid vesicles. To test the ability of HF-TAC to assist proper membrane insertion of proteins, we examined its effect on the pH-triggered insertion of the diphtheria toxin T-domain. The function of the T-domain is to translocate the catalytic domain across the lipid bilayer in response to acidification of the endosome. This translocation is accompanied by the formation of a pore, which we used as a measure of activity in a vesicle leakage assay. We have also used F?rster resonance energy transfer to follow the effect of HF-TAC on aggregation of aqueous and membrane-bound T-domain. Our data indicate that the pore-forming activity of the T-domain is affected by the dynamic interplay of two principal processes: productive pH-triggered membrane insertion and nonproductive aggregation of the aqueous T-domain at low pH. The presence of HF-TAC in the buffer is demonstrated to suppress aggregation in solution and ensure correct insertion and folding of the T-domain into the lipid vesicles, without solubilizing the latter. Thus, hemifluorinated surfactants stabilize the low-pH conformation of the T-domain as a water-soluble monomer while acting as low-molecular weight chaperones for its insertion into preformed lipid bilayers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号