首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5182篇
  免费   356篇
  国内免费   1篇
  2023年   25篇
  2022年   65篇
  2021年   155篇
  2020年   92篇
  2019年   95篇
  2018年   155篇
  2017年   117篇
  2016年   162篇
  2015年   231篇
  2014年   295篇
  2013年   366篇
  2012年   422篇
  2011年   443篇
  2010年   258篇
  2009年   240篇
  2008年   287篇
  2007年   333篇
  2006年   304篇
  2005年   255篇
  2004年   236篇
  2003年   228篇
  2002年   196篇
  2001年   42篇
  2000年   33篇
  1999年   35篇
  1998年   42篇
  1997年   29篇
  1996年   16篇
  1995年   36篇
  1994年   25篇
  1993年   36篇
  1992年   22篇
  1991年   17篇
  1990年   22篇
  1989年   15篇
  1988年   14篇
  1987年   10篇
  1986年   13篇
  1985年   14篇
  1984年   16篇
  1983年   10篇
  1982年   14篇
  1981年   13篇
  1979年   12篇
  1977年   13篇
  1976年   11篇
  1975年   8篇
  1974年   6篇
  1970年   9篇
  1966年   6篇
排序方式: 共有5539条查询结果,搜索用时 15 毫秒
81.
A partially purified D-xylose isomerase has been isolated from cells of Streptomyces albus NRRL 5778 and some of its properties have been determined. D-Glucose, D-xylose, D-ribose, L-arabinose, and L-rhamnose served as substrates for the enzyme with respective Km values of 86, 93, 350, 153, and 312 mM and Vmax values measuring 1.23, 2.9, 2.63, 0.153, and 0.048 mumol min per mg of protein. The hexose D-allose was also isomerized. The enzyme was strongly activated by 1.0 mM Mg2+ but only partially activated by 1.0 mM Co2+. The respective Km values for Mg2+ and Co2+ were 0.3 and 0.003 mM. Mg2+ and Co2+ appear to have separate binding sites on the isomerase. These cations also protect the enzyme from thermal denaturation and from D-sorbitol inhibition. The optimum temperature for ketose formation was 70 to 80 C at pH values ranging from 7 to 9. D-Sorbitol acts as a competitive inhibitor with a Ki of 5.5 mM against D-glucose, D-xylose, and D-ribose. Induction experiments, Mg2+ activation, and D-sorbitol inhibition indicated that a single enzyme (D-xylose isomerase) was responsible for the isomerization of the pentoses, methyl pentose, and glucose.  相似文献   
82.
When the freshwater microalga Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense were deployed as free suspensions in unsterile, municipal wastewater for tertiary wastewater treatment, their population was significantly lower compared with their populations in sterile wastewater. At the same time, the numbers of natural microfauna and wastewater bacteria increased. Immobilization of C. sorokiniana and A. brasilense in small (2–4 mm in diameter), polymer Ca-alginate beads significantly enhanced their populations when these beads were suspended in normal wastewater. All microbial populations within and on the surface of the beads were evaluated by quantitative fluorescence in situ hybridization combined with scanning electron microscopy and direct measurements. Submerging immobilizing beads in wastewater created the following sequence of events: (a) a biofilm composed of wastewater bacteria and A. brasilense was created on the surface of the beads, (b) the bead inhibited penetration of outside organisms into the beads, (c) the bead inhibited liberation of the immobilized microorganisms into the wastewater, and (d) permitted an uninterrupted reduction of ammonium and phosphorus from the wastewater. This study demonstrated that wastewater microbial populations are responsible for decreasing populations of biological agents used for wastewater treatment and immobilization in alginate beads provided a protective environment for these agents to carry out uninterrupted tertiary wastewater treatment.  相似文献   
83.
Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB‐552, a novel cell‐penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor‐bearing mice. Studies of protein–peptide interactions have shown that COMMD1 protein is a major mediator of CIGB‐552 antitumor activity. Furthermore, a typical serine‐protease degradation pattern for CIGB‐552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB‐552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB‐552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF‐7 cells. None of the analyzed metabolites proved to be as effective as CIGB‐552 in promoting apoptosis in MCF‐7. Taking into account these results, it seemed important to examine their cell‐penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding‐dependent process, is impaired as well as metabolite–COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB‐552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
84.
Cyclodextrin glycosyltransferases (CGTases E.C.2.4.1.19) catalyze cyclomaltooligosaccharides (cyclodextrins) production, an important industrial process. We herein report structural features of Bacillus circulans DF 9R cyclodextrin glycosyltransferase including its sequence and several aspects of enzyme structure-function relationship. Protein ethoxyformylation, under our experimental conditions, indicated that only one out of the 13 enzyme histidines was modified leading to a drastic drop in cyclizing and hydrolytic activity. Besides, tryptic digestion of the 14C ethoxyformylated protein and studies of the peptide mixture showed that histidine 233 is the most reactive histidine residue. This is the first cyclodextrin glycosyltransferase with a known primary structure and a glutamine instead of glycine residue at position 179 in the highly conserved −6 subsite, shown to be involved in substrate binding. The presence of glycine at that position was considered as a requirement for such binding following the induced-fit mechanism already proposed. Moreover, the enzyme has all the features previously described for an α- or α/β-cyclodextrin producer.  相似文献   
85.
We have investigated epithelial cell proliferation and the rate of glandular recovery of the ventral prostate (VP) and seminal vesicle (SV) promoted by testosterone replacement (TR) in castration-induced regressed glands. Adult male Wistar rats were castrated and, after 21 days, they were treated with testosterone propionate (4 mg/kg/day). Intact (CT) and castrated rats without TR (CS) were also analysed. VP and SV were processed for histochemistry, morphometric-stereological analysis and immunocytochemistry to determine the PCNA index (PI). After 10 days of TR, the VP weight reached approximately 72% of the CT values, while the SV weight exceeded approximately 17% of the CT values. By the third day of TR, VP and SV presented a mean PI of 34% and 94% for distal region and 14% and 22% for proximal region, respectively. SV also had more luminal cells PCNA-positive than VP, mainly in the distal region. The PI values fell on days 5, 7 and 10, but were still higher than CT. These findings indicate that epithelial cells from involuted SV are more responsive to TR than those from VP when stimulated to proliferate and replace the luminal cell population, suggesting a different mechanism regulating cell proliferation in response to androgenic stimuli.  相似文献   
86.

Background

Despite great effort and investment incurred over decades to control bovine tuberculosis (bTB), it is still one of the most important zoonotic diseases in many areas of the world. Test-and-slaughter strategies, the basis of most bTB eradication programs carried out worldwide, have demonstrated its usefulness in the control of the disease. However, in certain countries, eradication has not been achieved due in part to limitations of currently available diagnostic tests. In this study, results of in-vivo and post-mortem diagnostic tests performed on 3,614 animals from 152 bTB-infected cattle herds (beef, dairy, and bullfighting) detected in 2007–2010 in the region of Castilla y León, Spain, were analyzed to identify factors associated with positive bacteriological results in cattle that were non-reactors to the single intradermal tuberculin test, to the interferon-gamma (IFN-γ) assay, or to both tests applied in parallel (Test negative/Culture + animals, T-/C+). The association of individual factors (age, productive type, and number of herd-tests performed since the disclosure of the outbreak) with the bacteriology outcome (positive/negative) was analyzed using a mixed multivariate logistic regression model.

Results

The proportion of non-reactors with a positive post-mortem result ranged from 24.3% in the case of the SIT test to 12.9% (IFN-γ with 0.05 threshold) and 11.9% (95% CI 9.9-11.4%) using both tests in parallel. Older (>4.5 years) and bullfighting cattle were associated with increased odds of confirmed bTB infection by bacteriology, whereas dairy cattle showed a significantly lower risk. Ancillary use of IFN-γ assay reduced the proportion of T-/C + animals in high risk groups.

Conclusions

These results demonstrate the likelihood of positive bacteriological results in non-reactor cattle is influenced by individual epidemiological factors of tested animals. Increased surveillance on non-reactors with an increased probability of being false negative could be helpful to avoid bTB persistence, particularly in chronically infected herds. These findings may aid in the development of effective strategies for eradication of bTB in Spain.  相似文献   
87.
88.
cGMP-inhibited cAMP phosphodiesterase 3A (PDE3A) is expressed in mouse oocytes, and its function is indispensable for meiotic maturation as demonstrated by genetic ablation. Moreover, PDE3 activity is required for insulin/insulin-like growth factor-1 stimulation of Xenopus oocyte meiotic resumption. Here, we investigated the cAMP-dependent protein kinase B (PKB)/Akt regulation of PDE3A and its impact on oocyte maturation. Cell-free incubation of recombinant mouse PDE3A with PKB/Akt or cAMP-dependent protein kinase A catalytic subunits leads to phosphorylation of the PDE3A protein. Coexpression of PDE3A with constitutively activated PKB/Akt (Myr-Akt) increases PDE activity as well as its phosphorylation state. Injection of pde3a mRNA potentiates insulin-dependent maturation of Xenopus oocytes and rescues the phenotype of pde3(-/-) mouse oocytes. This effect is greatly decreased by mutation of any of the PDE3A serines 290-292 to alanine in both Xenopus and mouse. Microinjection of myr-Akt in mouse oocytes causes in vitro meiotic maturation and this effect requires PDE3A. Collectively, these data indicate that activation of PDE3A by PKB/Akt-mediated phosphorylation plays a role in the control of PDE3A activity in mammalian oocytes.  相似文献   
89.
Severe sepsis, a syndrome that complicates infection and injury, affects 750,000 annually in the United States. The acute mortality rate is approximately 30%, but, strikingly, sepsis survivors have a significant disability burden: up to 25% of survivors are cognitively and physically impaired. To investigate the mechanisms underlying persistent cognitive impairment in sepsis survivors, here we developed a murine model of severe sepsis survivors following cecal ligation and puncture (CLP) to study cognitive impairments. We observed that serum levels of high mobility group box 1 (HMGB1), a critical mediator of acute sepsis pathophysiology, are increased in sepsis survivors. Significantly, these levels remain elevated for at least 4 wks after CLP. Sepsis survivors develop significant, persistent impairments in learning and memory, and anatomic changes in the hippocampus associated with a loss of synaptic plasticity. Administration of neutralizing anti-HMGB1 antibody to survivors, beginning 1 wk after onset of peritonitis, significantly improved memory impairments and brain pathology. Administration of recombinant HMGB1 to na?ve mice recapitulated the memory impairments. Together, these findings indicate that elevated HMGB1 levels mediate cognitive decline in sepsis survivors, and suggest that it may be possible to prevent or reverse cognitive impairments in sepsis survivors by administration of anti-HMGB1 antibodies.  相似文献   
90.
Insoluble polysaccharides can be degraded by a set of hydrolytic enzymes formed by catalytic modules appended to one or more non-catalytic carbohydrate-binding modules (CBM). The most recognized function of these auxiliary domains is to bind polysaccharides, bringing the biocatalyst into close and prolonged vicinity with its substrate, allowing carbohydrate hydrolysis. Examples of insoluble polysaccharides recognized by these enzymes include cellulose, chitin, β-glucans, starch, glycogen, inulin, pullulan, and xylan. Based on their amino acid similarity, CBMs are grouped into 55 families that show notable variation in substrate specificity; as a result, their biological functions are miscellaneous. Carbohydrate or polysaccharide recognition by CBMs is an important event for processes related to metabolism, pathogen defense, polysaccharide biosynthesis, virulence, plant development, etc. Understanding of the CBMs properties and mechanisms in ligand binding is of vital significance for the development of new carbohydrate-recognition technologies and provide the basis for fine manipulation of the carbohydrate–CBM interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号