全文获取类型
收费全文 | 5848篇 |
免费 | 388篇 |
国内免费 | 2篇 |
专业分类
6238篇 |
出版年
2023年 | 35篇 |
2022年 | 77篇 |
2021年 | 184篇 |
2020年 | 106篇 |
2019年 | 122篇 |
2018年 | 183篇 |
2017年 | 143篇 |
2016年 | 189篇 |
2015年 | 291篇 |
2014年 | 348篇 |
2013年 | 428篇 |
2012年 | 475篇 |
2011年 | 500篇 |
2010年 | 275篇 |
2009年 | 271篇 |
2008年 | 347篇 |
2007年 | 358篇 |
2006年 | 338篇 |
2005年 | 283篇 |
2004年 | 250篇 |
2003年 | 238篇 |
2002年 | 213篇 |
2001年 | 55篇 |
2000年 | 47篇 |
1999年 | 36篇 |
1998年 | 41篇 |
1997年 | 30篇 |
1996年 | 19篇 |
1995年 | 37篇 |
1994年 | 27篇 |
1993年 | 32篇 |
1992年 | 22篇 |
1991年 | 21篇 |
1990年 | 21篇 |
1989年 | 16篇 |
1988年 | 11篇 |
1987年 | 12篇 |
1986年 | 13篇 |
1985年 | 16篇 |
1984年 | 17篇 |
1983年 | 9篇 |
1982年 | 15篇 |
1981年 | 14篇 |
1979年 | 9篇 |
1978年 | 5篇 |
1977年 | 9篇 |
1976年 | 8篇 |
1975年 | 7篇 |
1972年 | 4篇 |
1970年 | 8篇 |
排序方式: 共有6238条查询结果,搜索用时 31 毫秒
61.
Piero Pollesello Renato Toffanin Erminio Murano Roberto Rizzo Sergio Paoletti Bjarne J. Kvam 《Journal of applied phycology》1992,4(2):149-155
Lipid extracts of the red algaGracilaria longa were studied by1H- and13C-NMR spectroscopy. Peaks in the13C-NMR spectra attributable to sterols, chlorophylls and carotenoids allowed free and acylated cholesterol, chlorophylla and lutein to be identified as the most abundant components of these classes. A content of 0.5 ± 0.1 μmoles of total cholesterol/g
wet alga was estimated from the1H-NMR spectrum, which also allowed the determination of the phosphatidylcholine/total lipid molar ratio (9.5 ± 0.5%). The13C-NMR spectroscopic experiments provided information on the position of the double bonds on the fatty acid residues. A comparison
between NMR spectra of lipid extracts obtained for wet and dried alga showed that the alga undergoes both a dramatic peroxidation
and some glycolipid degradation during the drying process. 相似文献
62.
Daniele De Barba Sergio Rossi Annie Deslauriers Hubert Morin 《Trees - Structure and Function》2016,30(1):87-97
Key message
In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.Abstract
The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions.63.
Roberto Bovara Giacomo Carrea Sergio Riva Francesco Secundo 《Biotechnology letters》1996,18(3):305-308
Summary Cholic acid (3,7,12-trihydroxy-5-cholanoic acid) was completely and selectively transformed into 12-ketoursodeoxycholic acid (3,7-dihydroxy-12-oxo-5-cholanoic acid) by means of two consecutive enzymatic steps catalyzed, the first, by 7- and 12-hydroxysteroid dehydrogenase and, the second, by 7-hydroxysteroid dehydrogenase. Coenzyme regeneration was carried out with -ketoglutarate-glutamate dehydrogenase and glucose-glucose dehydrogenase, respectively. 相似文献
64.
Rapid immunofluorescent determination of cells in the S phase in pea root meristems: An alternative to autoradiography 总被引:2,自引:0,他引:2
Photosystem II (PS II) activity and the localization of ribulose-l,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) were studied in primary leaves of young maize plants ( Zea mays L. cv. Fronica) by tetra-nitro-blue-tetrazoliumchloride reduction and immunolocalization, respectively. In tissue of 3-day-old plants all chloroplasts were structurally identical. From day 4 they developed into their typical appearance of mesophyll and bundle sheath chloroplasts. First PS II-activity was present in both types of chloroplasts. From day 4 it disappeared in bundle sheath chloroplasts concomitant with the loss of grana. RuBP carboxylase on the other hand was only present in bundle sheath chloroplasts at all stages of development. Thus, the control of the development of the photosystems and the Calvin cycle enzymes seem to differ. 相似文献
65.
Caspase-mediated cleavage of HuR in the cytoplasm contributes to pp32/PHAP-I regulation of apoptosis 总被引:2,自引:0,他引:2
Mazroui R Di Marco S Clair E von Roretz C Tenenbaum SA Keene JD Saleh M Gallouzi IE 《The Journal of cell biology》2008,180(1):113-127
The RNA-binding protein HuR affects cell fate by regulating the stability and/or the translation of messenger RNAs that encode cell stress response proteins. In this study, we delineate a novel regulatory mechanism by which HuR contributes to stress-induced cell death. Upon lethal stress, HuR translocates into the cytoplasm by a mechanism involving its association with the apoptosome activator pp32/PHAP-I. Depleting the expression of pp32/PHAP-I by RNA interference reduces both HuR cytoplasmic accumulation and the efficiency of caspase activation. In the cytoplasm, HuR undergoes caspase-mediated cleavage at aspartate 226. This cleavage activity is significantly reduced in the absence of pp32/PHAP-I. Substituting aspartate 226 with an alanine creates a noncleavable isoform of HuR that, when overexpressed, maintains its association with pp32/PHAP-I and delays the apoptotic response. Thus, we propose a model in which HuR association with pp32/PHAP-I and its caspase-mediated cleavage constitutes a regulatory step that contributes to an amplified apoptotic response. 相似文献
66.
Sergio E. Morales Theodore F. Cosart Jesse V. Johnson William E. Holben 《Applied and environmental microbiology》2009,75(3):668-675
To thoroughly investigate the bacterial community diversity present in a single composite sample from an agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we examined the effects of percent G+C DNA fractionation, sequence length, and degree of coverage of bacterial diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness). We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1 richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic classification might not be as applicable or as general as previously assumed and that such values likely vary between prokaryotic phyla or groups.Efforts to describe bacterial species richness and diversity have long been hampered by the inability to cultivate the vast majority of bacteria from natural environments. New methods to study bacterial diversity have been developed in the last two decades (32), many of which rely on PCR-based procedures and phylogenetic comparison of 16S rRNA gene sequences. However, PCR using complex mixtures of templates (as in the case of total microbial community DNA) is presumed to preferentially amplify certain templates in the mixture (23) based on their primary sequence, percent G+C (hereafter GC) content, or other factors, resulting in so-called PCR bias. Moreover, the amplification of template sequences depends on their initial concentration and tends to skew detection toward the most abundant members of the community (23). To further complicate matters, subsequent random cloning steps on amplicon mixtures are destined to result in the detection of numerically dominant sequences, especially where relative abundance can vary over orders of magnitude. Indeed, any analysis based on random encounter is destined to primarily detect numerically dominant populations. This is especially of concern where limited sampling is performed on highly complex microbial communities exhibiting mostly even distribution of populations with only a few showing any degree of dominance, as typically perceived for soils (17). These artifacts and sampling limitations represent major hurdles in bacterial community diversity analysis, since the vast majority of bacterial diversity probably lies in “underrepresented minority” populations (24, 30). This is important because taxa that are present only in low abundance may still perform important ecosystem functions (e.g., ammonia-oxidizing bacteria). Of special concern is that biases in detection might invalidate hypothesis testing on complex communities where limited sampling is performed (5).Recently, there has been a concerted effort toward addressing problems impeding comprehensive bacterial diversity studies (7, 13, 24, 26, 28). In recent years, studies have increased sequencing efforts, with targeted 16S rRNA gene sequence libraries approaching 2,000 clones (11) and high-throughput DNA-sequencing efforts (e.g., via 454 pyrosequencing and newer-generation high-throughput approaches) of up to 149,000 templates from one or a few samples (25, 30). These technological advances have come as researchers recognize that massive sequencing efforts are required to accurately assess the diversity of populations that comprise complex microbial communities (29, 30). Alternatively, where fully aligned sequence comparisons need to be made, novel experimental strategies that allow more-comprehensive detection of underrepresented bacterial taxa can be applied. One such approach involves the application of prefractionation of total bacterial community genomic DNA based on its GC content (hereafter GC fractionation) prior to subsequent molecular manipulations of total community DNA (14). This strategy has been successfully applied in combination with denaturing gradient gel electrophoresis (13) and 16S rRNA gene cloning (2, 21) to study microbial communities. This approach separates community genomic DNA, prior to any PCR, into fractions of similar percent GC content, effectively reducing the overall complexity of the total community DNA mixture by physical separation into multiple fractions. This facilitates PCR amplification, cloning, and detection of sequences in fractions with relatively low abundance in the community, thereby enhancing the detection of minority populations (13). Collectively, this strategy reduces the biases introduced by PCR amplification and random cloning of the extremely complex mixtures of templates of different GC content, primary sequence, and relative abundance present in total environmental genomic DNA.Any large molecular survey that relies on sequencing further requires the analysis of large amounts of data that must be catalogued into phylogenetically relevant groups. This is usually done using high-throughput methods like RDP Classifier or Sequence Match (6) or a tree-based method like Greengenes (8) or ARB (18). Two major pitfalls that are encountered using these former approaches are the presence of huge numbers of unclassified sequences in databases and the lack of representative sequences from all phyla. This leads to most surveys having large portions of their phylotypes designated as unclassified. The latter tree-based approaches, although better suited for classification schemes, are also dependent on having a comprehensive database with well-classified sequences for reproducible results. This reproducibility becomes especially important when trying to compare data across different studies, especially those that utilize different approaches and study systems.In the current study, we analyzed an extensive (∼5,000 clones) partial 16S rRNA gene library from a single soil sample that was generated using very general primers and GC-fractionated DNA. Total DNA was extracted from soil at a cultivated treatment plot at the National Science Foundation Long Term Ecological Research (NSF-LTER) site at the Kellogg Biological Station (KBS) in mid-Michigan (http://www.kbs.msu.edu/lter). To test the effect of GC fractionation on recovery of 16S rRNA gene sequences, we conducted a direct comparison with a nonfractionated library generated from the same soil sample. Using the GC-fractionated library, we also calculated several measures of bacterial diversity and examined the effects of sampling size and sequence length on Shannon-Weaver diversity index, Simpson''s reciprocal index (1/D, where D is the probability that two randomly selected individuals from a sample belong to the same species), evenness, and Chao1 richness estimation. The results show that GC fractionation is a powerful tool to help mitigate limitations of random PCR- and cloning-based analyses of total microbial community diversity, resulting in the recovery of underrepresented taxa and, in turn, reducing the sampling size needed for accurate estimations of bacterial richness. The results also provided evidence for the need to expand the typical scale of sequence-based survey efforts, particularly in environments where evenness abounds or where minority bacterial populations may have important effects on community function and processes. We suggest that there is a need for the establishment of standardized approaches for the analysis of sequence data from community diversity studies in order to maximize data comparisons across independent studies and show examples of software programs developed to facilitate comparative analysis of large sequence datasets. 相似文献
67.
Co-localization of susceptibility loci for psoriasis (PSORS4) and atopic dermatitis (ATOD2) on human chromosome 1q21 总被引:2,自引:0,他引:2
Giardina E Sinibaldi C Chini L Moschese V Marulli G Provini A Rossi P Paradisi M Chimenti S Galli E Brunetti E Girolomoni G Novelli G 《Human heredity》2006,61(4):229-236
Psoriasis (PS) is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation and altered differentiation. Atopic dermatitis (ATOD) is a chronic inflammatory, pruritic and eczematous disease frequently associated with respiratory atopy. These diseases are associated with distinct immunologic abnormalities and represent typical examples of complex diseases triggered by both genetic and environmental factors, as demonstrated by independent twin studies. Genome wide linkage studies have mapped susceptibility loci on several chromosomes (PSORS1-9; ATOD1-5). Four of them overlap on chromosomes 1q21, 3q21, 17q25 and 20p although ATOD is quite distinct from PS and these two diseases rarely occur together in the same patient. An association fine-mapping study has been performed to refine PSORS4 and ATOD2 susceptibility loci on chromosome 1q21 analyzing two independently collected cohorts of 128 PS and 120 ATOD trios. Genotype and haplotype analysis of PSORS4 and ATOD2 led us to detect significant p value for haplotypes defined by MIDDLE and ENDAL16 markers in both PS (p = 0.0000036) and ATOD (p = 0.0276), suggesting a strict co-localization within an interval of 42 kb. This genomic interval contains a single gene, LOR, encoding for loricrin. Polymorphic markers mapping in regulatory and coding regions did not show evidence of association in neither of the two diseases. However, expression profiles of LOR in skin biopsies have shown reduced levels in PS and increased levels in ATOD, suggesting the existence of a specific misregulation in LOR mRNA production. 相似文献
68.
Guilherme O. Longo Carlos Eduardo L. Ferreira Sergio R. Floeter 《Ecology and evolution》2014,4(23):4553-4566
Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large‐scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large‐scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10‐fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large‐scale pattern; however, it affected the contribution of some groups on a local scale (e.g., large‐bodied parrotfish) highlighting the need to incorporate critical functions into conservation strategies. 相似文献
69.
Stefano Lancellotti Vincenzo De Filippis Nicola Pozzi Flora Peyvandi Roberta Palla Bianca Rocca Sergio Rutella Dario Pitocco Pier Mannuccio Mannucci Raimondo De Cristofaro 《Free radical biology & medicine》2010,48(3):446-456
An enhanced formation of reactive oxygen species and peroxynitrite occurs in several clinical settings including diabetes, coronary artery disease, stroke, sepsis, and chronic inflammatory diseases. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and 3-nitrotyrosine (NT), respectively. Notably, ADAMTS-13 cleaves von Willebrand factor (VWF) exclusively at the Tyr1605–Met1606 peptide bond in the A2 domain. We hypothesized that peroxynitrite could oxidize either or both of these amino acid residues, thus potentially affecting ADAMTS-13-mediated cleavage. We tested our hypothesis using synthetic peptide substrates based on: (1) VWF Asp1596–Ala1669 sequence (VWF74) and (2) VWF Asp1596–Ala1669 sequence containing nitrotyrosine (VWF74-NT) or methionine sulfoxide (VWF74-MetSO) at position 1605 or 1606, respectively. The peptides were treated with recombinant ADAMTS-13 and the cleavage products analyzed by RP-HPLC. VWF74 oxidized by peroxynitrite underwent a severe impairment of its hydrolysis. Likewise, VWF74-MetSO was minimally hydrolyzed, whereas VWF74-NT was hydrolyzed slightly more efficiently than VWF74. Oxidation by peroxynitrite of purified VWF multimers inhibited ADAMTS-13 hydrolysis, but did not alter their electrophoretic pattern nor their ability to induce platelet agglutination by ristocetin. Moreover, VWF purified from type 2 diabetic patients showed oxidative damage, as revealed by enhanced carbonyl, NT, and MetSO content and was partially resistant to ADAMTS-13 hydrolysis. In conclusion, peroxynitrite may contribute to prothrombotic effects, hindering the proteolytic processing by ADAMTS-13 of high-molecular-weight VWF multimers, which have the highest ability to bind and activate platelets in the microcirculation. 相似文献
70.
Ribeiro-dos-Santos  Khayat AS Silva A Alencar DO Lobato J Luz L Pinheiro DG Varuzza L Assumpção M Assumpção P Santos S Zanette DL Silva WA Burbano R Darnet S 《PloS one》2010,5(10):e13205