全文获取类型
收费全文 | 5290篇 |
免费 | 376篇 |
国内免费 | 2篇 |
专业分类
5668篇 |
出版年
2023年 | 25篇 |
2022年 | 62篇 |
2021年 | 159篇 |
2020年 | 95篇 |
2019年 | 100篇 |
2018年 | 159篇 |
2017年 | 120篇 |
2016年 | 164篇 |
2015年 | 238篇 |
2014年 | 301篇 |
2013年 | 388篇 |
2012年 | 435篇 |
2011年 | 457篇 |
2010年 | 268篇 |
2009年 | 242篇 |
2008年 | 295篇 |
2007年 | 342篇 |
2006年 | 305篇 |
2005年 | 267篇 |
2004年 | 243篇 |
2003年 | 231篇 |
2002年 | 200篇 |
2001年 | 50篇 |
2000年 | 35篇 |
1999年 | 34篇 |
1998年 | 44篇 |
1997年 | 29篇 |
1996年 | 22篇 |
1995年 | 37篇 |
1994年 | 27篇 |
1993年 | 33篇 |
1992年 | 21篇 |
1991年 | 16篇 |
1990年 | 24篇 |
1989年 | 15篇 |
1988年 | 12篇 |
1987年 | 11篇 |
1986年 | 12篇 |
1985年 | 18篇 |
1984年 | 15篇 |
1983年 | 10篇 |
1982年 | 14篇 |
1981年 | 11篇 |
1979年 | 10篇 |
1978年 | 7篇 |
1977年 | 10篇 |
1976年 | 9篇 |
1975年 | 9篇 |
1974年 | 6篇 |
1970年 | 7篇 |
排序方式: 共有5668条查询结果,搜索用时 15 毫秒
11.
12.
13.
Epipelagic siphonophore assemblages associated with water masses along a transect between Chile and Easter Island (eastern South Pacific Ocean) 总被引:1,自引:0,他引:1
We analyze for the first time the spatial distribution of siphonophoresin relation to water masses along a 3750-km oceanic transectbetween the Chilean coast and the Easter Island (27° S),a sector scarcely known of eastern South Pacific Ocean. Thirty-onesiphonophore species were identified; Sulculeolaria turgidaand Vogtia glabra were recorded for the first time in this sector.The most abundant species were Muggiaea atlantica (29.2%), Eudoxoidesspiralis (24.5%) and Lensia subtilis (13.1%). Two differentsiphonophore assemblages east and west of 76 W, associated respectivelywith Subantarctic Water and Subtropical Water masses, can beused as water mass indicators. The former included the threemost abundant species, whereas the latter showed greater speciesrichness. This study provides basic knowledge on spatial distributionof siphonophores, which is important to develop future researchfocused on understanding the ecological role and biologicalprocesses driven by planktonic organisms in the southeasternPacific Ocean. 相似文献
14.
Daniel Paredes Jay A. Rosenheim Rebecca Chaplin‐Kramer Silvia Winter Daniel S. Karp 《Ecology letters》2021,24(1):73-83
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production. 相似文献
15.
16.
17.
Stefania Bellone Karim El-Sahwi Emiliano Cocco Francesca Casagrande Marilisa Cargnelutti Michela Palmieri Eliana Bignotti Chiara Romani Dan-Arin Silasi Masoud Azodi Peter E. Schwartz Thomas J. Rutherford Sergio Pecorelli Alessandro D. Santin 《Journal of virology》2009,83(13):6779-6789
Papillomavirus-like particles (VLPs) based on L1 capsid protein represent a promising prophylactic vaccine against human papillomavirus (HPV) infections. However, cell-mediated immune responses against this antigen are believed to be of limited therapeutic value in established HPV-infected cervical lesions and, for this reason, have not been intensively investigated in cervical cancer patients. In this study we analyzed and quantified by real-time PCR (RT-PCR) the RNA expression levels of E6, E7, and L1 genes in flash-frozen HPV-16 cervical carcinomas. In addition, the kinetics of expression of E6, E7, and L1 in HPV-16-infected primary cell lines established as long-term cultures in vitro was also evaluated at RNA and protein levels. Finally, in order to evaluate the therapeutic potential of L1-specific CD4+ and CD8+ T lymphocytes responses in cervical cancer patients, L1 VLP-loaded dendritic cells (DCs) were used to stimulate peripheral blood lymphocytes from cervical cancer patients and such responses were compared to those elicited by the E7 oncoprotein. We show that 22 of 22 (100%) flash-frozen cervical biopsy samples collected from HPV-16-positive cervical cancer patients harbor L1, in addition to E6 and E7 RNA, as detected by RT-PCR. E7 RNA copy number (mean, 176.2) was significantly higher in HPV-16-positive cervical cancers compared to the E6 RNA copy number (mean, 47.3) and the L1 copy number (mean, 58.3) (P < 0.0001 and P < 0.001, respectively). However, no significant differences in expression levels between E6 and L1 were found. Kinetic studies of E6, E7, and L1 RNA and protein expression levels in primary tumors showed a sharp reduction in L1 expression after multiple in vitro passages compared to E6 and E7. Autologous DCs pulsed with HPV-16 VLPs or recombinant full-length E7 elicited strong type 1 L1- and E7-specific responses in CD4+ and CD8+ T cells from cervical cancer patients. Importantly, L1 VLP-specific CD8+ T lymphocytes expressed strong cytolytic activity against autologous tumor cells and were as effective as E7-specific cytotoxic T lymphocytes in lysing naturally HPV-16-infected autologous tumor cells. Taken together, these data demonstrate a consistent expression of L1 in primary cervical tumors and the possibility of inducing effective L1/tumor-specific CD4+ and CD8+ T-lymphocyte responses in patients harboring HPV-infected cervical cancer. These results may have important implications for the treatment of patients harboring established HPV-infected lesions with L1 VLPs or combined E7/L1 DC-based vaccinations.Human papillomavirus (HPV) infection represents the most important risk factor for the development of cervical cancer. Although more than 100 distinct HPV genotypes have been described, and at least 20 are associated with cervical cancer, HPV type 16 (HPV-16) is by far the most frequently detected in cervical neoplasia regardless of the geographical origin of the patients (4). In the last few years significant advances have been made in the development of candidate prophylactic vaccine against cervical cancer and HPV-related infections. In several large prospective randomized studies, virus-like particles consisting of the HPV-16 and HPV-18 major capsid protein L1 (L1-VLPs) have shown promise in protecting young healthy females against persistent infection with HPV-16 and HPV-18 and their associated cervical intraepithelial neoplasia (reviewed in reference 12). These data strongly suggest that the implementation of large-scale L1-VLP-based prophylactic vaccinations have the potential to dramatically reduce worldwide cervical cancer rates in the years to come.Unfortunately, because HPV infection is endemic in humans and there is a long latency from HPV infection to the development of invasive cervical cancer in women, even if prophylactic L1-based vaccinations are implemented on a worldwide scale today it would take decades to perceive any significant benefit. Consistent with this view, an estimated 5 million cervical cancer deaths will occur in the next 20 years due to existing HPV infections (4, 12). Thus, the current development of therapeutic vaccines for protection against persistent HPV infections, cervical cancer, and its precursor lesions remains an area of great interest.Although the interactions between the host immune system and HPV-infected cells are still not completely understood, several lines of evidence suggest that protection against HPV-related infections by L1-VLP-based vaccines is likely conferred by the generation of high levels of neutralizing antibodies (12, 38). Nevertheless, a potential crucial role of L1-specific T-cell responses and the involvement of T cells in mediating the production of neutralizing antibodies and antiviral effect in infected hosts has been previously hypothesized (8, 24). This point may be particularly noteworthy in patients harboring HPV-infected cervical lesions because several studies have demonstrated the critical importance of both cytotoxic (CD8+) and helper (CD4+) T cells in achieving clinical responses (1, 5, 16-18, 20, 23). However, limited information is currently available to evaluate whether cell-mediated immune responses to L1-VLP may have any significant therapeutic effect in cervical cancer patients harboring HPV-16 positive tumors. Furthermore, to our knowledge, no direct comparison of the therapeutic efficacy of L1 and E7-specific immune responses against naturally HPV-16-infected cervical cancer have been yet reported in human patients.In the present study we have analyzed and quantified by highly sensitive real-time PCR (RT-PCR) the RNA levels of E6, E7, and L1 in flash-frozen biopsy specimens obtained from HPV-16-infected cervical carcinomas and in short- and long-term primary cultures of HPV-16-positive cervical tumors. In addition, we have studied the kinetics of expression of these genes and proteins during the establishment of HPV-16-positive primary tumors in vitro. Finally, using completely autologous systems of naturally infected HPV-16-positive human tumors, we have carefully studied the phenotype and function of L1-specific CD4+ and CD8+ T-lymphocyte responses generated by VLP-loaded dendritic cells (DCs) and compared their therapeutic potential to those elicited by DC loaded with the E7 oncoprotein. 相似文献
18.
Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection. 相似文献
19.
Cairns L Cirò M Minuzzo M Morlé F Starck J Ottolenghi S Ronchi A 《Journal of cellular physiology》2003,195(1):38-49
Erythropoiesis requires the stepwise action on immature progenitors of several growth factors, including stem cell factor (SCF), interleukin 3 (IL-3), and erythropoietin (Epo). Epo is required to sustain proliferation and survival of committed progenitors and might further modulate the level of expression of several erythroid genes, including globin genes. Here we report a new SCF-dependent immortalized mouse progenitor cell line (GATA-1 ts SCF) that can also grow in either Epo or IL-3 as the sole growth factor. When grown in SCF, these cells show an "open" chromatin structure of the beta-globin LCR, but do not significantly express globin. However, Epo or IL-3 induce globin expression and are required for its maintainance. This effect of IL-3 is unexpected as IL-3 was previously reported either to be unable to induce hemoglobinization, or even to antagonize it. This suggests that GATA-1 ts SCF cells may have progressed to a stage in which globin genes are already poised for expression and only require signal(s) that can be elicited by either Epo or IL-3. Through the use of inhibitors, we suggest that p38 may be one of the molecules modulating induction and maintenance of globin expression. 相似文献
20.