首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1416篇
  免费   146篇
  2023年   6篇
  2022年   8篇
  2021年   29篇
  2020年   26篇
  2019年   25篇
  2018年   34篇
  2017年   36篇
  2016年   53篇
  2015年   66篇
  2014年   73篇
  2013年   93篇
  2012年   121篇
  2011年   91篇
  2010年   62篇
  2009年   74篇
  2008年   84篇
  2007年   68篇
  2006年   67篇
  2005年   64篇
  2004年   57篇
  2003年   56篇
  2002年   58篇
  2001年   34篇
  2000年   46篇
  1999年   39篇
  1998年   18篇
  1997年   19篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1993年   11篇
  1992年   18篇
  1991年   12篇
  1990年   15篇
  1989年   13篇
  1988年   14篇
  1987年   7篇
  1986年   9篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有1562条查询结果,搜索用时 828 毫秒
41.
Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240–250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53''s response to DNA damage.  相似文献   
42.
Background and objectivesTo report the prevalence of obesity in a Spanish working population and its changes in recent years.Material and methodsData were collected from routine medical examinations performed on workers by a national mutual insurance society for occupational accidents and diseases (Ibermutuamur). A structured questionnaire was completed and physical examinations were performed. Overweight was defined as BMI ranging from 25 and 29.9, obesity as BMI of 30-39.9, and morbid obesity as BMI  40 kg/m2.ResultsData from 1,336,055 medical examinations performed from May 2004 to November 2007 were collected. Prevalence rates in the population examined in 2004 (n = 230,684; 73% males; average age, 36.4 years) were: morbid obesity, 0.5% (0.6% males, 0.5% females); obesity, 14.5% (17.0% males, 7.7% females); overweight, 38.4% (44.8% males, 21.3% females). Prevalence rates of obesity and overweight were higher in blue-collar workers (16.4% and 40.5% respectively) as compared to white-collar workers (10.9% and 34.4% respectively). There was a progressive increase in prevalence of obesity during the 4-year study (2004-2007) in both males (17.0%, 17.6%, 17.9%, 18.2%) and females (7.6%, 8.0%, 8.4%, 8.7%).ConclusionsPrevalence of obesity and overweight in the Spanish working population is high, especially in male blue-collar workers, and is increasing. There is a need to promote early prevention programs and specific treatments for obesity.  相似文献   
43.
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.  相似文献   
44.
45.
46.

Aim

In rice, the top two leaves are the major carbohydrate source during grain filling. Physiological performance of these leaves under salinity may allow estimate stress-induced yield loss.

Methods

Greenhouse grown rice plants (cv. Taipei 309) were subjected to 10 and 20 mM NaCl stress levels from germination till maturity. Plant development was measured at the flowering stage and yield parameters were quantified after complete ripening of panicles.

Results

Gas exchange in the main source leaves were not significantly affected by any of the stress levels. However, growth parameters as well as total metabolizable carbohydrates content, chlorophyll content (CCI), maximal efficiency of PSII photochemistry in dark-adapted state (F v/F m) and lipid peroxidation were significantly affected. Rice yield, measured as total panicle production, declined to 78 and 21 % of controls in 10 and 20 mM NaCl stress, respectively. Stress-induced yield loss was positively related with the decline in CCI, F v/F m and K+/Na+ ratio as well as with the increase in lipid peroxidation and total soluble carbohydrate contents.

Conclusions

Though the stress levels used in this work are below what is considered the minimal critical threshold of toxicity for rice, they induce significant negative effects on plant development and yield, when present along the whole plant life cycle.  相似文献   
47.
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.The first plant colonizers of land, approximately 450 million years ago in the mid-Paleozoic era, faced a daunting set of challenges associated with their new terrestrial environment, including desiccation, temperature extremes, gravity, and increased exposure to UV radiation (Waters, 2003; Leliaert et al., 2011). The transition from an exclusively aquatic to a terrestrial life style, therefore, would have necessitated the evolution of a toolbox of morphological and physiological features, some of which are apparent through studies of the fossil record or by examining extant plant lineages. For example, the development of architecturally complex cell walls for biomechanical support and structural protection, which typify modern land plants, can be traced back to divergence and radiation within the Charophycean green algae, their immediate ancestors (Sørensen et al., 2011). However, the most critical adaptive trait for survival during terrestrialization would have been the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to synthesize, deposit, and maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution. This idea is borne out by both fossil evidence (Edwards, 1993) and the ubiquity of cuticles among all extant embryophytes, from bryophytes (Budke et al., 2012) to angiosperms.Armed with a protective skin, together with a range of adaptive strategies for acquiring and conserving water, as well as for avoiding or tolerating water stress, embryophytes now thrive in a wide range of desiccating environments (Ogburn and Edwards, 2010; Aroca et al., 2012; Delaux et al., 2012; Jones and Dolan, 2012; Obata and Fernie, 2012; Gaff and Oliver, 2013). Accordingly, cuticles from a broad range of species, and in various ecological and agricultural contexts, have been studied from the perspective of their role as the primary barrier to transpirational water loss. However, it is now clear that cuticles play numerous other roles in plant development, physiology, and interactions with the abiotic environment and other organisms. Indeed, in recent years, there have been many instances of unexpected associations between the cuticle and diverse aspects of plant biology. In parallel, the past decade has seen considerable progress in understanding the biosynthesis of the major cuticle components and the complex regulatory networks that control cuticle synthesis and assembly.This review summarizes recent progress in elucidating the biochemistry and molecular biology of cuticle synthesis and function and highlights some of the connections to other aspects of plant biology, including signaling, pathogen defense, and development. Given the broad scope and space limitation, not every aspect of cuticle biosynthesis is covered in depth, and recent specialized reviews focusing on cuticle biomechanical properties (Domínguez et al., 2011), defensive functions (Reina-Pinto and Yephremov, 2009), and transport barrier properties (Burghardt and Riederer, 2006) may be of further interest. In addition, key ongoing questions in the field are discussed, and potential future approaches to resolving those questions are suggested.  相似文献   
48.
One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist.  相似文献   
49.
Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.  相似文献   
50.
Capsule Following recent introduction in Spain, Red‐billed Leiothrix have the potential to attain a wide distribution in Catalonia and probably in other parts of Europe.

Aim To investigate past, present and potential distribution of this exotic species in Catalonia (northeast Iberian Peninsula).

Methods We collected data on the species’ occurrence over the period 1992–2008 and used information obtained in other regions where it has previously established to produce hypotheses about the ecological processes that affect its population increase and range expansion. We then generated fine‐grained distribution maps covering the entire region for the periods 1992–2001 and 2002–2008, and for the species’ potential range according to its specific habitat requirements.

Results Since being first detected in the wild in the Collserola Park, near the city of Barcelona, Red‐billed Leiothrix have expanded to neighbouring forested areas. The wild population is currently in a phase of exponential growth and, according to our habitat suitability model, the species’ potential distribution in Catalonia might be 36 times greater than at present.

Conclusion Our results suggest that the Red‐billed Leiothrix has the potential to attain a widespread distribution over large regions of Europe in the near future. However, we discuss several factors that might affect these predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号