首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   40篇
  2023年   4篇
  2022年   7篇
  2021年   16篇
  2020年   12篇
  2019年   10篇
  2018年   17篇
  2017年   21篇
  2016年   24篇
  2015年   31篇
  2014年   41篇
  2013年   41篇
  2012年   50篇
  2011年   38篇
  2010年   24篇
  2009年   26篇
  2008年   31篇
  2007年   22篇
  2006年   22篇
  2005年   28篇
  2004年   24篇
  2003年   16篇
  2002年   16篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1990年   3篇
  1987年   2篇
  1985年   1篇
  1972年   1篇
排序方式: 共有565条查询结果,搜索用时 15 毫秒
101.
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock’s feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.  相似文献   
102.
Knowledge of ripeness and regulation of postharvest processes is an important tool to prevent loss of commercial value in both fruit and cut flower markets. The joint analysis of hormones and vitamin E levels can reveal complex interactions between hormones and oxidative stress as key regulators of postharvest processes. Profiling of both groups of metabolic compounds was performed during the ripening of non-climacteric fruits (red raspberry, Rubus idaeus L.) and senescence of ethylene-insensitive flowers (Dutch Iris, Iris x hollandica L.). After an initial extraction of the sample, without further purification steps, the hormonal profile was analyzed by UPLC-MS/MS and vitamin E levels were measured by HPLC. This methodological approach was very fast and had enough sensitivity for the analysis of small samples. Raspberry fruit maturation was characterized by a decline of cytokinin levels [zeatin, zeatin riboside, 2-isopentenyl adenine, and isopentenyl adenosine (Z, ZR, 2-iP, and IPA, respectively)] and gibberellins (GA1 in particular). Exogenous application of ABA prevented δ-tocopherol loss during fruit ripening. Iris floral senescence was also under strict hormonal control, also mediated by cytokinins and gibberellins. Z, ZR, 2-iP, GA9, and GA24 levels decreased in inner tepals, whereas the level of IPA decreased in style-merged-to-stigma tissues, thus suggesting tissue-specific roles for different hormones. α-Tocopherol levels decreased during senescence of inner tepals, hence suggesting enhanced oxidative stress. In conclusion, the rapid and sensitive hormonal and vitamin E profiling presented here can help in understanding the key physiological processes underlying fruit ripening and floral senescence.  相似文献   
103.
In recent years different types of structural variants (SVs) have been discovered in the human genome and their functional impact has become increasingly clear. Inversions, however, are poorly characterized and more difficult to study, especially those mediated by inverted repeats or segmental duplications. Here, we describe the results of a simple and fast inverse PCR (iPCR) protocol for high-throughput genotyping of a wide variety of inversions using a small amount of DNA. In particular, we analyzed 22 inversions predicted in humans ranging from 5.1 kb to 226 kb and mediated by inverted repeat sequences of 1.6–24 kb. First, we validated 17 of the 22 inversions in a panel of nine HapMap individuals from different populations, and we genotyped them in 68 additional individuals of European origin, with correct genetic transmission in ∼12 mother-father-child trios. Global inversion minor allele frequency varied between 1% and 49% and inversion genotypes were consistent with Hardy-Weinberg equilibrium. By analyzing the nucleotide variation and the haplotypes in these regions, we found that only four inversions have linked tag-SNPs and that in many cases there are multiple shared SNPs between standard and inverted chromosomes, suggesting an unexpected high degree of inversion recurrence during human evolution. iPCR was also used to check 16 of these inversions in four chimpanzees and two gorillas, and 10 showed both orientations either within or between species, providing additional support for their multiple origin. Finally, we have identified several inversions that include genes in the inverted or breakpoint regions, and at least one disrupts a potential coding gene. Thus, these results represent a significant advance in our understanding of inversion polymorphism in human populations and challenge the common view of a single origin of inversions, with important implications for inversion analysis in SNP-based studies.  相似文献   
104.
Previous mitochondrial DNA analyses on ancient European remains have suggested that the current distribution of haplogroup H was modeled by the expansion of the Bell Beaker culture (ca 4,500–4,050 years BP) out of Iberia during the Chalcolithic period. However, little is known on the genetic composition of contemporaneous Iberian populations that do not carry the archaeological tool kit defining this culture. Here we have retrieved mitochondrial DNA (mtDNA) sequences from 19 individuals from a Chalcolithic sample from El Mirador cave in Spain, dated to 4,760–4,200 years BP and we have analyzed the haplogroup composition in the context of modern and ancient populations. Regarding extant African, Asian and European populations, El Mirador shows affinities with Near Eastern groups. In different analyses with other ancient samples, El Mirador clusters with Middle and Late Neolithic populations from Germany, belonging to the Rössen, the Salzmünde and the Baalberge archaeological cultures but not with contemporaneous Bell Beakers. Our analyses support the existence of a common genetic signal between Western and Central Europe during the Middle and Late Neolithic and points to a heterogeneous genetic landscape among Chalcolithic groups.  相似文献   
105.
106.

Background

We study the evolutionary Prisoner''s Dilemma on two social networks substrates obtained from actual relational data.

Methodology/Principal Findings

We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates.

Conclusion

Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.  相似文献   
107.
The equilibrium properties of dimeric Photobacterium leiognathi Cu,Zn superoxide dismutase mutant bearing two negative charges in the amino acid clusters at the association interface has been studied, experimentally and computationally, and compared to those of the native enzyme. Pressure-dependent dissociation is observed for the mutant, as observed by the fluorescence shift of the unique tryptophan residue located at the intersubunit surface. The spectral shift occurs slowly, reaching a plateau after 15-20 min, and is fully reversible. Measurement of the degree of dissociation allows us to calculate the standard volume variation upon association and the dissociation constant at atmospheric pressure. On the other hand the native protein is undissociable at any pressure. In the simulative approach, the dissociation free energy has been calculated through the blue moon calculation method for the case of a multidimensional reaction coordinate, corrected for the rotational contribution within the semiclassical approximation for a free rigid-body rotor. The scheme permits to define a definite path for the rupture of the dimer and to calculate the effective force involved in the process. The calculated free energy difference is close to the experimental one, and the value obtained for the mutant is well below that obtained for the native protein, indicating that the theoretical reaction scheme is able to reproduce the experimental trend. Moreover, we find that, when the separation distance increases, the protein structure of the monomer is stable in line with the fast recovery of the original fluorescence properties after decompression, which excludes the presence of partly unfolded intermediates during the dimer-monomer transition.  相似文献   
108.
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a “black hole” of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.  相似文献   
109.
110.
Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号